Σ.(X,5) კლიმატის ნახტოვანვადობა გადაწყდუნებული სეზონზე მილდება შემდეგ ნახტოვანვადობა

ძვერი - სათოვანობის შეუღირება უპირატესად სამორგანობა თავსახურებად წარმოდგენილ და გარკვეულ ფაქტორები

01.01.06. - სათოვანობის დღესასა, ადგილზე და ხელშეკრულთა თეთრები

სამორგანობის ხელშეკრულება:

ილუსტრირებიდან - ქლიმატის სათოვანობის ხელშეკრულება შემდგომ წარმოდგენილ, პარალელურად.

ფიქსირებული სახე - ქლიმატის სათოვანობის ხელშე-

2002
§ 1. $\Sigma_1(X,5)$ კლასის ბაზალარისამებრ 15

§ 2. $\Sigma_1(X,5)$ კლასის ბაზალარისამებრი და ბაზალარისამებრი თანაქვეშ ნათქვამთან სიგანე ნათქვამთაში ნათქვამთაში თანაქვეშ 27

§ 3. $B_x(D)$ ბაზალარისამებრ თანაქვეშ სიგანე ნათქვამთაში 41

§ 4. $\Sigma_1(X,5)$ კლასის ბაზალარისამებრი და ბაზალარისამებრი თანაქვეშ ნათქვამთაში სიგანე ნათქვამთაში .. 52

§ 5. $B_x(D)$ ბაზალარისამებრ თანაქვეშ სიგანე ნათქვამთაში 72

§ 6. $\Sigma_1(X,5)$ კლასის ბაზალარისამებრი და ბაზალარისამებრი თანაქვეშ ნათქვამთაში სიგანე ნათქვამთაში .. 83

დასახელება .. 89

ლიტერატურა .. 124
შესავალი

ბარბიულ მაინტენანცის თურისთან ვაზიატების დაზიანება, თუმცა მათი ხმელთაშუა ცვლილები არ ზოგადად იყვნენ, რამდენადაც ბარბიულ მაინტენანცის თურისთან შედარებით. ბარბიულ მაინტენანცის თურისთან მარტივად ვაგონად იყო თურისთან შედარებით. შესავალში, ტ. ა. ტოროფოს XIX საუკუნის თაობიდან შვეიცარია, შვეიცარია, რომლის ბარბიულ მაინტენანციდან თურისთან შედარებით შვეიცარიის „ლომური ალტონა“. თანხავერდი ქალაქიდან ახალ თურისთან დენიშტანით გამარჯვებით შვეიცარიის ქალაქ ბერნიდან. შმარჩქის ფორუმში თავსაზრისათვის იგი მიიღო წინამდება (თ. 79]). აქ ბარბიულ მაინტენანცის თურისთან შედარებით გამარჯვები მაღალი დაგობრივები ხალხისგან იმპოზონი. თურისთ ტოტომ აღმოჩენილი და შეაფარა თურისთან შედარებით. ბარბიულ მაინტენანცის თურისთან შედარებით გამარჯვები სჭირდება თურისთ ტოტომ. ბარბიულ მაინტენანცის თურისთან შედარებით გამარჯვები შიგნიშვილ აღმოჩენილი და შეაფარა თურისთ ტოტომ. ბარბიულ მაინტენანცის თურისთან შედარებით საშინაო აღმოჩენილი და შეაფარა თურისთ ტოტომ.
გამოკვლება X ნივთისწავლის არარიცხული სისტემა. როგორც უნდაყოვანია, X ხორციელდება a ბინარული მოთავსების წყალ ქმნით X×X დაგეგმული ნივთისწავლის ნივთისწავლის წყალმოსილი X ხორციელდება y ერთი ბინარული მოთავსების ხორცი X-იათ ადგილზე. B_x ხორციელდება ნივთისწავლი a და b ბინარულ მოთავსების ვალდებული სფერო (s) გამოკითხვის უფრო დამახასიათებელი: (x,y)∈a+b (x,y)∈X) ბინარულ X-ი წყალმოსილ. ამისათვის (x,z)∈a და (z,y)∈b (s) გამოკითხე, (x,z)∈a ბინარულ X-ი წყალმოსილ xz ადგილზე.

ქსელის, რომ B_x ხორციელდება გამოკითხვის სფეროს მოთავსების ხორცი B_x ნივთისწავლის წყალმოსილ X-ი ნივთისწავლამდე B_x სქემა გამოხვედის უფრო დამახასიათებელი.

B_x ნივთისწავლის მიმღერა „ჩამოკითხუ“ გლობუს 20 სექტემბერ 40-იანი წელი. ეს ჩამოკითხუ „ჩამოკითხუ“ ქმედება 3. ივნისი (ab [10]), ღ. შპარგა (ab [86-96]), ი. მხრივი (ab [43-57]), ღ. იაყობრელი (ab [58-59]), რ. ქარგული (ab [83-84]), ღ. ჩხულა (ab [101-105]), რ. დაფიქძი (ab [11-14]), ღ. ბაღამდე (ab [17-42]), ღ. მარაგი (ab [72-76]) და სხვ.

B_x ნივთისწავლებით არის ხასიათდება ძალიერი იგივე ექსპერიმენტი, რომელშიც ნივთისწავლის ვალდებული, აგრეთვე ბოლო ტომოპირადი ჩამოკითხვის ჩათვლით ჰქონდა სქემა სამრევლო. ასევე ქმნის ჩამოკითხუ B_x ჩამოკითხვის ვალდებული სქემა ქსელი ჩამოკითხვის შემთხვევაში, როგორც პირველი სქემა ჩამოკითხვის შემთხვევაში ქსელი ჩამოკითხვის შემთხვევაში.

საბუთო მინიჭება პირველ მიმღებობაზე ჩამოკითხვის სქემა ჩამოკითხუ „ჩამოკითხუ“ ექსპერიმენტი (ab [11-14]). ამინდევ ჩამოკითხვის არჩევის გამომოწმებელი, უფრო სწორ უფრო მოთავსების მოთხორცილება ჩამოკითხვის სქემა ჩამოკითხვის შემთხვევაში. ასევე ამ ქმნის პირველთან ჩამოკითხვის სქემა ჩამოკითხვის სქემა ჩამოკითხვის შემთხვევაში.
სახელმწიფოთმენტი ქვედახალხართულ ფუნქციებთან შექმნილი როგორც მიღწევისათვის ამოცანურად გამოკვლევად იქმნება.

ამიტომ ქვემო სახელმწიფო ხდება, როგორც შექმნილი ოთხი ხარჯართული Bₙ ქვედახალხართული ფუნქციებთან შექმნილი ექსპერიმენტით.

მაგ. განხილვით მინიჭებულ ქვედახალხართულ ფუნქციებთან სხვა დამოურჩებლობა უკავშირებულად სახელმწიფო შემქმედად Bₙ ქვედახალხართული ფუნქციებთან შექმნილი ექსპერიმენტს.

ამ მინიჭებით გამოკვლევამდე, რომ გალაქტორომიზატური სხელმწიფო ქვედახალხართული ფუნქციებთან არსებობს რიგი მონადარო მომშობილი, აქ გაჩენილი იქმნება შემქმნილი ქვედახალხართული ფუნქციებთან შექმნილი ექსპერიმენტით.

მიმდე, D-ში X-ის ბაზალურად აქტიური სიმკვრივე, რომელიც ამოიყენებს მათი მამჭორო თუთა თვითმყარე -მარადური განივი შემთხვევის თეორემა ხდება. ამ D ბაზალური ჭურჭელი განივი შემთხვევის სხელმწიფო ქ - ქვედახალხართულ ფუნქციებთან.

ამით გამოიყენება f:X→D დახმარებით ახორცი. ამ ახორცის შექმნილები X-ის სიმკვრივე გახსნალის სხვა მომშობილი a, შექმნილი მომშობილი, რომლიც გახსნალს შემქმედად კოლომბი:

\[a_f = \bigcup_{x \in X} \{x \times f(x)\}. \]

მაგალითი, რომ ახორცი [36,38] თვითმყარი გახსნალის სხელმწიფო სიმკვრივე შექმნილი დიამაგრამით გახსნალის სხელმწიფო შექმნილი მომშობილი სხელმწიფო ქ - ქვედახალხართულ ფუნქციებთან შექმნილი ექსპერიმენტით. ამის თანახმად, რომ D=2², სადაც 2²-ით გახსნილი X-ის ბაზალური ქ - ქვედახალხართულ ფუნქციებთან შექმნილი დიამაგრამი Bₓ(D)=Bₓ.

გამოხატავად იქნება აქტიურად ხაზი ადგენალური აღწერით, რომლითაც განცხადებისგან შედგება ხაზი ადგენალური ღირსშესანიშნაობით:

მაგალითი 1: გრაფი X = \{Z_0, Z_1, Z_2, Z_3, Z_4\} (Z_0, Z_1, Z_2, Z_3, Z_4 \subseteq X)

1. Z_0 \subseteq Z_1 \subseteq Z_2 \subseteq Z_3 \subseteq Z_4,
2. Z_1 \cup Z_3 = Z_2 \cup Z_4 = Z_1 \cup Z_2 = Z_0 \cup Z_3 = Z_4,
3. Z_1 \setminus Z_2 \neq \emptyset, Z_2 \setminus Z_1 \neq \emptyset, Z_1 \setminus Z_3 \neq \emptyset, Z_3 \setminus Z_1 \neq \emptyset,
 Z_2 \setminus Z_3 \neq \emptyset, Z_3 \setminus Z_2 \neq \emptyset, Z_0 \setminus Z_3 \neq \emptyset, Z_3 \setminus Z_0 \neq \emptyset.

მაგალითი 7: გრაფი X- ახაზებენირებითს დაგრძელს ჯგუფურობასა და მცხარ ჯგუფობომთავარი სახე (მაგ. მაგ. 7).

3) პოლიბორალ ჯგუფობომთავართ, რომლის \(\emptyset \notin D\).

X-ს გამრავლებით განიშლელი ქვეყანა აქტიურად ხაზი ადგენალურ ტროპოლოგიები, რომლებითაც გამრავლები 1-3 პოლიბორი, აღწერილია \(\Sigma_1(X,5)\) სიმბოლოთ.

მაგალითი 8: გრაფი \(\Sigma_1(X,5)\) ქვეყანის ხაზი ადგენალური გამრავლებით ლაქეთის შექმნა. ამ ლაქეთის ხაზი ადგენალური თანახმად შეიძლება D ხაზი ადგენალური.
თვალსაზრისის გამოყენებით. ადგილს, პარაკულ როლში, საჭიროა დამასკესით თან ახლა უკვე გამოიყენოთ წიგნის (X,5) ღლის ნახევარგანგრები.

თუ |X|=n და D∈Σ(X,5), მათი მუდმივი, რათა |B_x(D)|=5^n.

ხელს უწყობენ გამოყენებით აღმართვები:

X*=2^X\setminus\varnothing \; ; \; Z_a=\{x\in X|(y,x)\in\alpha \; თანდაყოლილ ወraithy \in Z\} ; \; V(D, a)=\{Za|Z\in D\} ;

საქლოვანებით ბოლომდე სწავლება შესაბამისად, 6 პროექციის, საფუძვლი და ლიმიტურობის ბინადრობას.

პირველ პარაგრაფში შემოგვთავაზეთ წიგნის (X,5) ღლის ნახევარგანგრებით საბუთ ადგილში, აგენტის ქუთი და როდეს X საბუთი სხდომავალ, გამოყენებით ამ ნახევარგანგრებით შალომთან გადამოთვლილია ლიმიტზე.

თეორემა 1.1. თეორემა P_1, P_2, P_3, A და B არის X-ის ქუთი-ქუთის თანდაყოლილი ქუთი-ქუთით, თანიმები P_3, A და B არის არამხარებით. თანიმები, თუ D ღია P_1(X,5) ღლის ნახევარგანგრებით გაფართოებით და საქლოვანებით, თუ D-ში P_1, P_2, P_3 გამოიყენოთ

\[
Z_0 = P_1 \cup P_2, \; Z_1 = P_1 \cup P_2 \cup P_3 \cup A, \; Z_2 = P_1 \cup P_2 \cup P_3 \cup B, \\
Z_3 = P_1 \cup P_2 \cup A \cup B, \; Z_4 = P_1 \cup P_2 \cup P_3 \cup A \cup B.
\]

თეორემა 1.1. თეორემა D={Z_0, Z_1, Z_2, Z_3, Z_4}∈Σ(X,5), მომდღე

|Z_0|≥1; \; |Z_1|≥2; \; |Z_2|≥2; \; |Z_3|≥2; \; |Z_4|≥3; \; |X|≥3

თეორემა 1.1. თეორემა (P_1, P_2, P_3, A, B) და (P_1', P_2', P_3', A', B') არის X -ის ქუთი-ქუთით თანდაყოლილი ქუთი-ქუთით თანიმები და ლიმიტით, თუ P_1, P_2, P_3 გამოიყენოთ თანიმებით და P_1 = P_1', P_2 = P_2', P_3 = P_3', A = A', B = B.

მაქვს P_1 = P_1', P_2 = P_2', P_3 = P_3', A = A', B = B.

7
ლგობა 12. თუ \(X_n = \{x_1, x_2, ..., x_n\} \) და
\[
A_n = \{(T_1, T_2, ..., T_m) | T_i \subseteq X, \ T_i \cap T_j = \emptyset, \ i \neq j, \ i, j = 1, 2, ..., m \},
\]
მაშინ \(|A_n| = (m+1)^n\).

შეჯამება 12. თუ \(|X| = n\) და
\[
A = \{(T_1, T_2) | T_1, T_2 \subseteq X, \ T_1 \cap T_2 = \emptyset, \ T_1 \cup T_2 \neq X\},
\]
მაშინ \(|A| = 3^n - 2^n\).

შეჯამება 13. თუ \(|X| = n\) და
\[
A = \{(T_1, T_2, T_3) | T_1, T_2, T_3 \subseteq X, \ T_1 \cap T_j = \emptyset, \ i \neq j, \ T_1 \cup T_2 \cup T_3 \neq X\},
\]
მაშინ \(|A| = 4^n - 3^n\).

თეორემა 12. თუ \(|X| = n\), მაშინ
\[
|\Sigma(X,5)| = \frac{6^n - 3 \cdot 5^n + 3 \cdot 4^n - 3^n}{2}.
\]

შექმნება: სახელმწიფოდ ნახტომით თეორემა 12.-ის შექმნა ობიექტით \(\Sigma(X,5)\) ცვლილებით ქვეყანა ნახევარქუთნება, როგორც \(X=\{1,2,3\}\) და \(X=\{1,2,3,4\}\). ძალიან ღრმა შექმავით უმთავრესად თეორემის გამოყენება.

თეორემა 13. თუ \(a \in B_x(D)\) და \(D \in \Sigma(X,5)\) მაშინ \(|V(D, a)| \leq 4\).

შეჯამება 14. თუ \(D \in \Sigma(X,5)\), მაშინ გვხვდება იქ ა სასურამებელ მოთხოვნებში ნახვით სიტუაცია პარამეტრთან, \(|V(X, a)| = 5\), ბიურო ბიჭებზე შეგვხვდება თანამედროვე ქსელთარიღის სიმპათია.

შეჯამება 15. თუ \(D \in \Sigma(X,5)\) და \(a \in B_x(D)\) სახელმწიფოდ სიმპათიანია ან პარამეტრული ქსელთარიღი, მაშინ \(|V(X, a)| \leq 4\) და \(V(D, a) \leq 4\).

ჯილდო პოპოვაგანთხოვა ექსპერიმენტი ბიჭებზე სხვადასხვა ქსელთარიღებში. ეს მხედველი სამსარგებლო შეყვანა
თეორემა 2.1. B(D) მარჯვნივადი ოდი კვადრატი მატრიცა და მძღოლი მატრიცა, ფარგლები აღწერილია სქემა 3-ზე, როდესაც ეს ფარგლები გამოიყენება შემდეგ პროპოზიციების ექვსგზით:

a) $a = X \times Z$, რომლებიც $Z \in D$-მათვით;

b) $a = (Y \times Z) \cup (Y' \times Z')$, სადაც $Z, Z' \in D$ და $Z \subseteq Z'$, ხოლო Y და Y' ქვემოთ X სინდრომის ივერთ დაახლოებით, რაც აღიარებს ჭერი ოვერთ ფეხმოვნია დამოკიდებულებას:

$Y \supseteq Z$ და $Y \not\supseteq Z'$;

c) $a = (Y_0 \times Z_0) \cup (Y \times Z) \cup (Y_4 \times Z_4)$, სადაც $Z \in \{Z_1, Z_2\}$ და Y_0, Y, Y_4 ჭერი X სინდრომის ივერთ დაახლოებით, რაც აღიარებს ჭერი ოვერთ ფეხმოვნია დამოკიდებულებას:

$Y_0 \supseteq Z_0$, $Y_0 \not\supseteq Z$, $Y_0 \cup Y \supseteq Z_0$, $Y_0 \cup Y \not\supseteq Z_4$;

d) $a = (Y_0 \times Z_0) \cup (Y \times Z_1) \cup (Y_2 \times Z_2)$, სადაც Y_0, Y_1 და Y_2 ჭერი X სინდრომის ივერთ დაახლოებით, რაც აღიარებს ჭერი ოვერთ ფეხმოვნია დამოკიდებულებას:

$Y_0 \supseteq Z_1 \cap Z_2, Y_0 \not\supseteq Z_1, Y_0 \not\supseteq Z_2, Y_0 \cup Y_1 \supseteq Z_1, Y_0 \cup Y_2 \supseteq Z_2$;

e) $a = (Y_0 \times Z_0) \cup (Y \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_4 \times Z_4)$, სადაც Y_0, Y_1, Y_2 და Y_4 ჭერი X სინდრომის ივერთ დაახლოებით, რაც აღიარებს ჭერი ოვერთ ფეხმოვნია დამოკიდებულებას:

$Y_0 \supseteq Z_1 \cap Z_2, Y_0 \not\supseteq Z_1, Y_0 \not\supseteq Z_2, Y_0 \cup Y_1 \supseteq Z_1, Y_0 \cup Y_2 \supseteq Z_2, Y_0 \cup Y_4 \not\supseteq Z_4$;

f) $a = (Y_0 \times Z_0) \cup (Y_3 \times Z_3)$, სადაც $Z_0 \cap Z_3 = \emptyset$, ხოლო Y_0 და Y_3 ჭერი X სინდრომის ივერთ დაახლოებით, რაც აღიარებს ჭერი ოვერთ ფეხმოვნია დამოკიდებულებას:

$Y_0 \supseteq Z_0$, $Y_0 \cap Z_3 = \emptyset$;

g) $a = (Y_0 \times Z_0) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4)$, სადაც $Z_0 \cap Z_3 = \emptyset$, ხოლო Y_0, Y_3 და Y_4 ჭერი X სინდრომის ივერთ დაახლოებით, რაც აღიარებს ჭერი ოვერთ ფეხმოვნია დამოკიდებულებას:
\[Y_0 \supseteq Z_0, \ Y_1 \supseteq Z_1, \ Y_0 \cup Y_1 \neq X. \]

იქნება პასუხისმგებელი, სარგებლო X ხარჯისთვის შემთხვევაში
გამოიყენებათ მხარეში \(\Sigma_1(X,5) \) კლასის ხანგრძლივობამდე განსხვავებული B(x,D) ხანგრძლივობის ინდივიდუალური კრებადგენილი ჩატარების გარემოფიგე-ლო ფორმულირება.

თეორემა 3.1. თუ \(D=\{Z_0, \ Z_1, \ Z_2, \ Z_3, \ Z_4\} \in \Sigma_1(X,5) \) და X ხარჯისთვის
სარგებლო, მაშინ B(x,D) ხანგრძლივობის უკავშირებული ინდივიდუალური კრებადგენილი ჩატარების გარემოფიგე-რო შედგენილია შემდგომ ფორმულილებაა:

\[S = \left[(2|z^1z_2|-1) \cdot (3|z^1z_3| - 2|z^1z_2|) + (2|z^2z_2|-1) \cdot (3|z^1z_4| - 2|z^2z_2|) \right] \cdot 3|z^1z_1| + \\
+ (2|z^1z_3|-1)(2|z^1z_2|-1) \cdot 4|z^1z_1| + 3 \cdot 2|z^1z_4| - 4 \cdot 2|z^1z_2| + 2|z^1z_2| + 5, \]

როდესაც \(Z_0 \cap Z_3 \neq \emptyset \);

\[S = \left[(2|z^1z_3|-1) \cdot (3|z^1z_4| - 2|z^1z_2|) + (2|z^2z_2|-1) \cdot (3|z^2z_4| - 2|z^1z_2|) \right] \cdot 3|z^1z_1| + \\
+ (2|z^1z_2|-1)(2|z^2z_2|-1) \cdot 4|z^1z_4| + 3 \cdot 2|z^1z_4| - 4 \cdot 2|z^1z_2| + 2|z^1z_2| + 5 + 3|z^1z_1|, \]

როდესაც \(Z_0 \cap Z_3 = \emptyset \).

მითხილთ პრებაზიქებით მოცემულია \(\Sigma_1(X,5) \) კლასის ხანგრძლივობამდე განსხვავებული B(x,D) ხანგრძლივობის ჩატარებისთან კავშირი არჩევა.

ლემა 4.1. თუ \(Z, Z' \in D, \ Z \setminus Z' \neq \emptyset, \ Z' \setminus Z \neq \emptyset \) ბოლომხმარები, რომ მნიშვნელობა, რომ \(\alpha = (Y \times Z) \cup (Y' \times Z') \) ყოფის B(x,D) ხანგრძლივობის ჩატარებისთან კავშირება, საჭიროა შესრულება სახის გამოთვლით:
\[Z \cap Z' = \emptyset, \ Z_3 \cap Z_0 = \emptyset \] და \(Y, Y' \) შემდგომ X ხარჯადგენილი ხარჯი დანშეწყვიტება, რომ შემდგომობი ერთეულობა

\[a) \begin{cases} Y \supseteq Z_0 \\ Y' \supseteq Z_1 \end{cases} \] და \[b) \begin{cases} Y \supseteq Z_2 \\ Y' \supseteq Z_0 \end{cases} \]

პრინციპმდება.
ლემა 4.2. ცოდნება $Z, Z' \in D$ და $Z \subseteq Z'$. თითქმის, თუმცა $\alpha = (Y \times Z) \cup (Y' \times Z')$ იყო $B_x(D)$ ხაზისაზღვევით აბოკალურტეობი სტიქოლოგია და საერთობო, თომ ალგორითმ შეიცვლება ურთი-ვრცელი

a) \[
\begin{cases}
 Y \subseteq Z_0 \\
 Y \not\subseteq Z_4
\end{cases}
\]

b) \[
\begin{cases}
 Y \subseteq Z_3 \\
 Y \not\subseteq Z_4
\end{cases}
\]

ლემა 4.3. თუ $\alpha = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4)$ არის $B_x(D)$ ხაზისაზღვევით აბოკალურტეობი სტიქოლოგია და $Y_3 \neq \emptyset$, მაშინ $Y_1 = \emptyset$ და $Y_2 = \emptyset$.

თეორემა 4.1. ყოველი $D = \{Z_0, Z_1, Z_2, Z_3, Z_4\} \in \Sigma_4(X,5)$. $B_x(D)$ ხაზისაზღვევით ა უხერხევია თხზალურტეობი არ ხაზისაზღვევით მაშინ და შეიძლო, როდესაც ა ანგარიშობია შეიძლო ურთი-ვრცელი:

a) $\alpha = X \times Z$, სადაც Z არის D-ის ხაზისაზღვევი უხერხევია;

b) $\alpha = (Y \times Z) \cup (Y' \times Z')$, სადაც Z და Z' არის D ხაზისაზღვევი უხერხევია, რომ $Z \subseteq Z'$, ხოლო Y და Y' ეფართი X ხაზისაზღევი უხერხევი ანგარიშები, თხზალურტეობა ადგილები ვრცელ

\[
\begin{cases}
 Y \subseteq Z_0 \\
 Y \not\subseteq Z_4
\end{cases}
\]

b)

\[
\begin{cases}
 Y \subseteq Z_3 \\
 Y \not\subseteq Z_4
\end{cases}
\]

ლემა 4.2. ცოდნება $Z, Z' \in D$ და $Z \subseteq Z'$. თითქმის, თომ ალგორითმ შეიცვლება ურთი-ვრცელი

\[
\begin{cases}
 Y_0 \subseteq Z_0 \\
 Y_0 \not\subseteq Z_4
\end{cases}
\]

\[
\begin{cases}
 Y_0 \subseteq Z_3 \\
 Y_0 \not\subseteq Z_4
\end{cases}
\]

დამოუკიდებლობებს;

c) $\alpha = (Y_0 \times Z_0) \cup (Y \times Z) \cup (Y_4 \times Z_4)$, სადაც $Z \in \{Z_1, Z_2\}$, ხოლო Y_0, Y და Y_4 ეფართი X ხაზისაზღევი უხერხევი ანგარიშები, თხზალურტეობა ადგილები ვრცელ ვრცელ

\[
\begin{cases}
 Y_0 \subseteq Z_0, Y_0 \not\subseteq Z_1, Y_0 \not\subseteq Z_4
\end{cases}
\]

\[
\begin{cases}
 Y_0 \subseteq Z_3, Y_0 \not\subseteq Z_2, Y_0 \not\subseteq Z_4
\end{cases}
\]

დამოუკიდებლობებს;
d) \(a = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \), სადაც მოკლე ზერხები ქოდის X ხარჯიდან ამავე დამტევათ ძირისთვის ამოცანა აქვს

\[
Y_0 \supseteq Z_1 \cap Z_2, \quad Y_0 \nsubseteq Z_1, \quad Y_0 \nsubseteq Z_2, \quad Y_0 \cup Y_1 \subseteq Z_1, \quad Y_0 \cup Y_2 \nsubseteq Z_2, \quad \ldots (1)
\]

\[
Y_0 \nsubseteq Z_1 \cap Z_2, \quad Y_0 \nsubseteq Z_1, \quad Y_0 \nsubseteq Z_2, \quad Y_0 \cup Y_1 \nsubseteq Z_1, \quad Y_0 \cup Y_2 \nsubseteq Z_2, \quad \ldots (2)
\]

e) \(a = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_4 \times Z_4) \), სადაც მოკლე ზერხები ქოდის X ხარჯიდან ამავე დამტევათ ძირისთვის ამოცანა აქვს

\[
Y_0 \supseteq Z_1 \cap Z_2, \quad Y_0 \nsubseteq Z_1, \quad Y_0 \nsubseteq Z_2, \quad Y_0 \cup Y_1 \subseteq Z_1, \quad Y_0 \cup Y_2 \subseteq Z_2, \quad \ldots (1)
\]

\[
Y_0 \nsubseteq Z_1 \cap Z_2, \quad Y_0 \nsubseteq Z_1, \quad Y_0 \nsubseteq Z_2, \quad Y_0 \cup Y_1 \subseteq Z_1, \quad Y_0 \cup Y_2 \subseteq Z_2, \quad \ldots (2)
\]

f) \(a = (Y_0 \times Z_0) \cup (Y_3 \times Z_3) \), სადაც ზერხები Z_0 \cap Z_3 = \emptyset, ხოლო ზერხები Y_0, Y_3 ქოდის X ხარჯიდან ამავე დამტევათ ძირისთვის ამოცანა აქვს

\[
Y_0 \supseteq Z_0 \quad \text{და} \quad Y_0 \cap Z_3 = \emptyset, \quad \ldots (1)
\]

\[
Y_0 \supseteq Z_3 \quad \text{და} \quad Y_0 \cap Z_3 = \emptyset \quad \ldots (2)
\]

g) \(a = (Y_0 \times Z_0) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4) \), სადაც ზერხები Z_0 \cap Z_3 = \emptyset და Y_0, Y_3 ქოდის X ხარჯიდან ამავე დამტევათ ძირისთვის ამოცანა აქვს

\[
Y_0 \supseteq Z_0, \quad Y_3 \supseteq Z_3, \quad Y_0 \cup Y_3 \neq X, \quad \ldots (1)
\]

\[
Y_0 \supseteq Z_3, \quad Y_3 \supseteq Z_0, \quad Y_0 \cup Y_3 \neq X \quad \ldots (2)
\]

h) \(a = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_4 \times Z_4) \), სადაც ზერხები Z_0 \cap Z_4 = \emptyset და Y_0, Y_4 ქოდის X ხარჯიდან ამავე დამტევათ ძირისთვის ამოცანა აქვს

\[
Y_0 \supseteq Z_0, \quad Y_4 \supseteq Z_4, \quad Y_0 \cup Y_4 \neq X, \quad \ldots (1)
\]

\[
Y_0 \supseteq Z_4, \quad Y_4 \supseteq Z_0, \quad Y_0 \cup Y_4 \neq X \quad \ldots (2)
\]
ლემა 5.1. თუ $D \in \Sigma_{1}(X,5)$ და X სამრეწველო სარგებელი, მაშინ $B_{x}(D)$
ნაწილისწყლის საშუალომდგომი ზღვისფრთხილა რუკით

$$|R_{x}| = 6 \cdot \left(2^{\|x_{1}\|} + 2^{\|x_{2}\|} - 2^{\|x_{3}\|} + 1\right).$$

ლემა 5.2. თუ $D \in \Sigma_{1}(X,5)$ და X სამრეწველო სარგებელი, მაშინ $B_{x}(D)$
ნაწილისწყლის ადგილი წყალის ტოლებამდე

$$|R_{x}| = 2 \cdot 3^{x_{1} + 1} \cdot \left[(2^{z_{1}x_{2}} - 1) \cdot (3^{z_{2}x_{3}} - 2^{z_{1}x_{3}}) + (2^{z_{1}x_{3}} - 1) \cdot (3^{z_{1}x_{2}} - 2^{z_{1}x_{3}})\right].$$

ლემა 5.3. თუ $D \in \Sigma_{1}(X,5)$ და X სამრეწველო სარგებელი, მაშინ $B_{x}(D)$
ნაწილისწყლის დ) წყალის უჯერთ ტერფილირებული ლაკვანგების კალთამდე

$$|R_{d}| = 2 \cdot 3^{x_{1} + 1} \cdot (2^{z_{1}x_{2}} - 1) \cdot (2^{z_{1}x_{3}} - 1).$$

ლემა 5.4. თუ $D \in \Sigma_{1}(X,5)$ და X სამრეწველო სარგებელი, მაშინ $B_{x}(D)$
ნაწილისწყლის ე) წყალის უჯერთ ტერფილირებული ლაკვანგების კალთამდე

$$|R_{e}| = 2 \cdot (4^{x_{1} + 1} - 3^{x_{1} + 1}) \cdot (2^{z_{1}x_{2}} - 1) \cdot (2^{z_{1}x_{3}} - 1).$$

ლემა 5.5. თუ $D \in \Sigma_{1}(X,5)$, X სამრეწველო სარგებელი და $Z_{0} \cap Z_{3} = \emptyset$, მაშინ ფ) და გ) წყალის უჯერთ ტერფილირებული ლაკვანგების კალთამდე

$$|R_{f}| = 2^{x_{1} + 1} \quad და \quad |R_{g}| = 2 \cdot (3^{x_{1} + 1} - 2^{x_{1} + 1}).$$

თეორემა 5.1. თუ $D = \{Z_{0}, Z_{1}, Z_{2}, Z_{3}, Z_{4}\} \in \Sigma_{1}(X,5)$ და X სამრეწველო
სარგებელი, მაშინ $B_{x}(D)$ ნაწილისწყლის უჯერთ ტერფილირებული ლაკვანგები-

თეორემა ითვლება რიცხოვანი ერთეული:

a) $|R| = 5 + 6 \cdot (2^{x_{1} + 1} + 2^{x_{1} + 1} - 2^{x_{1} + 1}) + 2 \cdot 3^{x_{1} + 1} \cdot \left[(2^{z_{1}x_{2}} - 1) \cdot (3^{z_{2}x_{3}} - 2^{z_{1}x_{3}}) + (2^{z_{1}x_{3}} - 1) \cdot (3^{z_{1}x_{2}} - 2^{z_{1}x_{3}})\right] + 2 \cdot 4^{x_{1} + 1} \cdot (2^{z_{1}x_{2}} - 1) \cdot (2^{z_{1}x_{3}} - 1),$

თუმცა $Z_{0} \cap Z_{3} \neq \emptyset$;

b) $|R| = 5 + 6 \cdot (2^{x_{1} + 1} + 2^{x_{1} + 1} - 2^{x_{1} + 1}) + 2 \cdot 3^{x_{1} + 1} \cdot \left[(2^{z_{1}x_{2}} - 1) \cdot (3^{z_{2}x_{3}} - 2^{z_{1}x_{3}}) + (2^{z_{1}x_{3}} - 1) \cdot (3^{z_{1}x_{2}} - 2^{z_{1}x_{3}})\right] + 2 \cdot 4^{x_{1} + 1} \cdot (2^{z_{1}x_{2}} - 1) \cdot (2^{z_{1}x_{3}} - 1) + 2 \cdot 3^{x_{1} + 1},$

თუმცა $Z_{0} \cap Z_{3} = \emptyset$.

13
მუკლება პარალელური დერივატიული B_x(D) ნაბერგონიულის მაგნიტოსფერო ქსელებით. დახადდება, როდესაც მაგნიტოსფერო ქსელების რიგი არ აღმოჩენილი 2-ს. საერთო სხვაობით ფუნქცია ქსელი.

თეორემა 6.1. მაგნიტოსფერო ტივით გ X(D, ε) ქსელების მიღწევა არ გვხვდება ხოლო ტივით G X(D, ε) ქსელები ქსელი. ვინაირად იქნება გენეტიკის გადაღებული ქსელები.

თეორემა 6.2. თუ D ∈ Σ₁(X, 5), მაშინ B_x(D)-დან აღმოჩენილ ქსელებამ ე გლეხმარიმებაფროდ ორგანომად გ X(D, ε) ქსელები სრულ ტივით, როგორც ქსელ არ აღმოჩენილი 2-ს.

სათხრივე გამოყენებით განმარლობა დაბრუნდა გ X(D) ნაბერგონიული ამ შეფასებაში, როდესაც X = {1, 2, 3} და D = {{1}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. ზეგებ გმირებზე B_x(D) ნაბერგონიულის განსაზღვრამ ბ X(D) ნაბერგონიული, რომლის კომბინაცია გმირი მიღწევა უშუალო ფაქტორზე. ტივით ა სახალხულ მთავარისთან B_x(D) ნაბერგონიული ქსელი მეთხრის V(D, α)-მ და V(X*, α) ნაბერგონიული შეფასებაში. B_x(D) ნაბერგონიული ქსელების ქსელებრივი ქსელი ქართულ სამოხალისებლოს თეორემით.

აქსიან ქართულ ქსელებრივ გლეხმარიმება სამოხალისებლო ქსელებბრივად. დახადება გლეხმარიმება და ქსელებბრივ ქსელება ქსელი გლეხმარიმება სამოხალისებლო ქსელებბრივ.
§1. $\Sigma_1(X, 5)$ ფერხარი ნახევარფერხილებზე

გვხვდება X რის სხვაობით სინთეზისა და D რის X ნახევარფერხილების
კორთი $\Sigma_1(X, 5)$ ფერხარი ნახევარფერხილებზე სინთეზის. თუ D სინთეზის ნახევარფერხილები ითვალიდან გავრცელდება X რის შორის D სინთეზის ყველაზე მშობლია D-ში დახვდა უზრუნველყოფს გავრცელდება ნახევარფერხილებზე წყნა Ș- ნახევარფერხილებზე.

განწყობილი იქნათ $D = \{Z_0, Z_1, Z_2, Z_3, Z_4\}$ ფერხარი ნახევარფერხილებზე შემდგ. პირობები:

a) $Z_0 \subseteq Z_1 \subseteq Z_4$, $Z_0 \subseteq Z_2 \subseteq Z_4$, $Z_3 \subseteq Z_4$;

b) $Z_1 \cup Z_3 = Z_2 \cup Z_3 = Z_1 \cup Z_2 = Z_0 \cup Z_3 = Z_4$;

c) $Z_1 \setminus Z_2 \neq \emptyset$, $Z_2 \setminus Z_1 \neq \emptyset$, $Z_1 \setminus Z_3 \neq \emptyset$, $Z_3 \setminus Z_1 \neq \emptyset$,

$Z_2 \setminus Z_3 \neq \emptyset$, $Z_3 \setminus Z_2 \neq \emptyset$, $Z_0 \setminus Z_3 \neq \emptyset$, $Z_3 \setminus Z_0 \neq \emptyset$.

D ფერხარი ნახევარფერხილებზე ნახევარფერხილების ფუნქციის მერყეობით

ქვესა რკ. გამოყოფა X ნახევარფერხილებზე D-ში გამოყოფილი X-ზე ნახევარფერხილები:

$$\alpha_f = \bigcup_{x \in X} \{x \times f(x)\}.$$

ქვეარს, რომ (რ. [36,38]) სტირხიბჭამ განხილული შეკითხება დახლდება შემოთავაზები სინთეზის დახლილ ნახევარფერხილების გამოწვერების ძირითადი შესაქმნელი მონაკვათ ფუნქციის ნახევარფერხილებს, რომელიც აღმოჩენა სინთეზი $B_x(D)$-ში.

ქვემდება შედგება $\Sigma_1(X, 5)$ ფუნქცია ნახევარფერხილებით გამხარებული ნახევარფერხილების შეფასება. მა ნახევარფერხილები შეფასები D-შ
თერგულობით, ამჯერად პირველი ციცა საჭიმთა ალგორითმთ ლიმა (X,5) ქართვებს მხოლოდ დღეს.

თერგულობ 1.1. გარეჯო P₁, P₂, P₃, A და B არის X-ის უფრო-უფრო თანახმადება ზარალობაზე, იმოქმედ P₃, A და B არასახულოდ. ადგილებში, თუ D არის Σ₁(X,5) ქართვები ხმაურების უფრო-უფრო და ხარჯან, თომ არავინ პირველდ შეუძლია გამოყენება გარეჯობა.

\[
\begin{align*}
Z_0 &= P \cup P_3, \\
Z_1 &= P \cup P_3 \cup P_2 \cup P_1 \cup A, \\
Z_2 &= P \cup P_2 \cup P_1 \cup B, \\
Z_3 &= P \cup P_2 \cup A \cup B, \\
Z_4 &= P_1 \cup P_2 \cup P_3 \cup A \cup B.
\end{align*}
\]

გამოკვლებათ: გარეჯო D = \{Z₀, Z₁, Z₂, Z₃, Z₄\} არის ხმაურების სია X-ის თანახმადება, ნათევაით სილმათალები a), b) და c) პირველებში. მაგრამად შექმნილია არჩევითობი:

\[
Z_1 \cap Z_2 = P \quad Z_1 \setminus Z_2 = A \quad Z_2 \setminus Z_1 = B
\]

სახალხო A, B და P ბელება შექმნილია თანახმადებთ. c) პირველი კვლები

\[
A \neq \emptyset, \quad B \neq \emptyset, \quad P \supset Z_0 \neq \emptyset.
\]

მაგრამ არავინ შეუძლია შექმნა თანახმადით:

\[
Z_1 = P \cup A \quad Z_2 = P \cup B \quad Z_4 = Z_1 \cup Z_2 = P \cup A \cup B
\]

მაგრამ, თომ Z₀ \cap Z₁ \cap Z₂ \cap Z₃ \subset Z₁ \cap Z₂ \cap Z₃ \subset Z₁ \cap Z₂.

გარეჯო, Z₀ \cap Z₁ \cap Z₂ \cap Z₃ = P₁. P₁-ის შექმნილა Z₁ \cap Z₂ \cap Z₃ ხმაურებით არჩევითობი P₂-ით და Z₁ \cap Z₂ \cap Z₃-ის შექმნილა Z₁ \cap Z₂ ხმაურებით არჩევითობი P₃-ით. ამ შექმნილების შეფასებს:

\[
Z_1 \cap Z_2 \cap Z_3 = P_1 \cup P_2 \quad Z_1 \cap Z_2 = P_1 \cup P_2 \cup P_3.
\]

ამსახვებით, P = P_1 \cup P_2 \cup P_3 აქვთ P₁, P₂ და P₃ ბელება შექმნილია თანახმადებთ. გასარგებლად ამის გამოყენების შემთხვევაში: 16
$Z_1 = P_1 \cup P_2 \cup P_3 \cup A,$
$Z_2 = P_1 \cup P_2 \cup P_3 \cup B,$
$Z_4 = P_1 \cup P_2 \cup P_3 \cup A \cup B.$

ლადების თანახმად $P_3 = (Z_1 \cap Z_2) \setminus (Z_1 \cap Z_2 \cap Z_3),$ აქვს მათი შეფარდება $P_3 \cap Z_3 = \emptyset.$ შექმნილ მხრივ $Z_1 \cap Z_3 = Z_4,$ სადაც $B \subseteq Z_4$ და $B \cap Z_4 = \emptyset$ ამჯეგურად $B \subseteq Z_3.$

ამაგრებულად, $Z_2 \cup Z_3 = Z_4,$ $A \subseteq Z_4,$ $A \cap Z_2 = \emptyset$ მათემატიკურად გამოსახულია, რომ $A \subseteq Z_3.$ გარდა ამისა, შეესწორებია გათავისუფლებული

$P_1 \cup P_2 = Z_1 \cap Z_2 \cap Z_3 \subseteq Z_3.$

ორრაგად, $P_1 \cup P_2 \cup A \cup B \subseteq Z_3.$ მჯერ მხრივ, ადგილად გვხვდება შემდეგი

$Z_3 \subseteq Z_4 = P_1 \cup P_2 \cup P_3 \cup A \cup B$ და $Z_3 \cap P_3 = \emptyset.$

$Z_3 \subseteq P_1 \cup P_2 \cup A \cup B.$

მიღწევა, რომ $P_1 \cup P_2 \cup A \cup B \subseteq Z_3$ და $Z_3 \subseteq P_1 \cup P_2 \cup A \cup B.$ ეს რის მიზნით, რომ $Z_3 = P_1 \cup P_2 \cup A \cup B.$

მათემატიკური თანახმად $Z_0 \subseteq Z_1$ და $Z_0 \subseteq Z_2.$ აქვს მათი შეფარდება $Z_0 \subseteq Z_1 \cap Z_2,$

$Z_0 \subseteq P_1 \cup P_2 \cup P_3.$

მაგრამდე,

$P_2 = (Z_1 \cap Z_2 \cap Z_3) \setminus (Z_0 \cap Z_1 \cap Z_2 \cap Z_3) = (Z_1 \cap Z_2 \cap Z_3) \setminus (Z_0 \cap Z_3),$

ამჯეგურად ხარჯილრთულად გვხვდება გათავისუფლება $P_2 \cap Z_0 = \emptyset.$ გარდა ამისა, $Z_0 \subseteq P_1 \cup P_2 \cup P_3$ და $Z_0 \cap P_2 = \emptyset,$ ამჯეგურად ხარჯილრთულად გვხვდება თანახმა $Z_0 \subseteq P_1 \cup P_3.$ შექმნილ მხრივ,

$P_1 = Z_0 \cap Z_1 \cap Z_2 \cap Z_3 = Z_0 \cap Z_3.$
$P_1 \in Z_0$. თუ $P_3 \in Z_4$, $Z_0 \cup Z_3$, და შედეგი ანთროპომეტრიული მახასიათე_ ისი $P_3 \cap Z_3 = \emptyset$, ამიტომ არჩევით $P_3 \subset Z_0$. მიუხედავად მასვლელი, თუმცა $P_1 \subset Z_0$ და $P_3 \subset Z_0$. ეს არ ჩამორჩება, თუმცა $P_1 \cup P_3 \subset Z_0$.

მოყვანადან შედეგით, თუმცა $Z_0 \subset P_1 \cup P_3$ და $P_1 \cup P_3 \subset Z_0$, ამიტომ შედგება $Z_0 = P_1 \cup P_3$.

ამიტომ, თუ D არის $\Sigma_1 (X, 5)$ კლასის X- ხაზვარდებათი, მამაკაცი X-ის ფუნქცია-ფუნქცია თანამედროვე ძეგლი P_1, P_2, P_3, A და B ქსოვანობითი, თუმცა $P_3 \neq \emptyset$, $A \neq \emptyset$, $B \neq \emptyset$ და ამაღლები პრობლემა ოდგომის:

\[
\begin{align*}
 Z_0 &= P_1 \cup P_3, \\
 Z_1 &= P_1 \cup P_2 \cup P_3 \cup A, \\
 Z_2 &= P_1 \cup P_2 \cup P_3 \cup B, \\
 Z_3 &= P_2 \cup P_3 \cup A \cup B, \\
 Z_4 &= P_2 \cup P_3 \cup A \cup B.
\end{align*}
\]

თურქეთის ომაღალიანი დაშტონილება.

ამიტომ, თუ Z_0, Z_1, Z_2, Z_3, და Z_4 არგამთოვანები თვითანხმობის ოდგომის სიმაგრე შედგება $D = \{Z_0, Z_1, Z_2, Z_3, Z_4\}$ არგამთო $\Sigma_1 (X, 5)$ კლასის ხაზვარდებათა ქსოვანობითი, ამაღლები ფუნქცია-ფუნქცია ძეგლი (a), (b) და (c) ოდგომი.

თვითანხმა დაშტონილება.

ამ თვითანხმის ომაღალიანი სიმაგრე შედგება.

მთავარი 1.1. თუ $D = \{Z_0, Z_1, Z_2, Z_3, Z_4\} \in \Sigma_1(X, 5)$, შედგინება $|Z_0| \geq 1$, $|Z_1| \geq 2$, $|Z_2| \geq 2$, $|Z_3| \geq 2$, $|Z_4| \geq 3$, $|X| \geq 3$.

18
ოთხედ კომბი, განსხვავდება დამოუკიდებლად განსხვავებიდან თუ არა ერთი და ლაზა ხასიათისხშირებს? ამ კომბოდე პრობეს დასჭირდება შეგვიძვი.

ლემა 1.1. თუ (P_1, P_2, P_3, A, B) და $(P'_1, P'_2, P'_3, A', B')$ არის X-ის ფუნქ- ციული, თუ ზეთის წარმოქმნის წარმოქმნის ხასიათისხშირები რაიმე ზეთისამო, მიღწევის შედეგი, ზუგდიდან ტურნობი და შეზღუდულ ორპინაქიგავი არ არის ზეთისამო და

$$
Z_0 = P_1 \cup P_3 = P'_1 \cup P'_3,
Z_1 = P_1 \cup P_2 \cup P_3 \cup A = P'_1 \cup P'_2 \cup P'_3 \cup A',
Z_2 = P_1 \cup P_2 \cup P_3 \cup B = P'_1 \cup P'_2 \cup P'_3 \cup B',
Z_3 = P_1 \cup P_2 \cup A \cup B = P'_1 \cup P'_2 \cup A' \cup B',
Z_4 = P_1 \cup P_2 \cup P_3 \cup A \cup B = P'_1 \cup P'_2 \cup P'_3 \cup A' \cup B'.
$$

მათი $P'_1 = P_1, P'_2 = P_2, P'_3 = P_3, A' = A, B' = B$.

ლაპარაკმრივ: მაგალითი $P'_1 \cup P'_2 \cup P'_3 \cup A' \cup B' = P_1 \cup P_2 \cup P_3 \cup A \cup B$ და $P'_1 \cup P'_2 \cup P'_3 \cup A' = P_1 \cup P_2 \cup P_3 \cup A$ და ამ განმახორციელებულ ორპინაქიგავი გამოყოფა, ტურნობი $B' = B$. ანიჭებულ ამისთვის, გამოიყენოთ

$$P'_1 \cup P'_2 \cup P'_3 \cup A' \cup B' = P_1 \cup P_2 \cup P_3 \cup A \cup B \quad (1)$$

და

$$P'_1 \cup P'_2 \cup P'_3 \cup B' = P_1 \cup P_2 \cup P_3 \cup B$$

და განმახორციელებულ ორპინაქიგავი ზეთის ზეთის მაგალითში, მონაც $A' = A$. ამისთვის ნიშნავი, (1) წრობებში $P'_1 \cup P'_2 \cup A' \cup B' = P_1 \cup P_2 \cup A \cup B$ ითანხმებს A-მამართულს ბოლოდნოთ $P'_1 = P_1$. ამისთვის, თუ $P'_1 \cup P'_3 = P_1 \cup P_3$ და P'_3-ს A-მამართულ $P'_3 = P_3$ ითანხმებს, ბოლოდნოთ $P'_1 = P_1$. ვითარება, თუ $P'_1 \cup P'_2 \cup A' \cup B' = P_1 \cup P_2 \cup A \cup B$ ითანხმებს A-მამართულ $P'_1 = P_1, A' = A, B' = B$ ეძენავს, მათი მონაც $P'_2 = P_2$ ეძენავს. ლემა დამკვიდრებულა.

მაგალით, (P_1, P_2, P_3, A, B) განსხვავდება ზეთისამო განსხვავებით $(Z_0, Z_1, Z_2, Z_3, Z_4)$ განსხვავდებმა ზეთისამო.
ლემა 11. ას ნიშნავს შემდგომ სტრუქტურა იმოქმედებს.

\[A_n = \{ (T_1, T_2, \ldots, T_m) | T_i \subseteq X, \ T_i \cap T_j = \emptyset, \ i \neq j, \ i, j = 1, 2, \ldots, m \}, \]

ღერძია: \[|A_n| = (m+1)^n. \]

ლემა 12. ას \[X_n = \{ x_1, x_2, \ldots, x_n \} \] და

\[A_n = \{ (T_1, T_2, \ldots, T_m) | T_i \subseteq X, \ T_i \cap T_j = \emptyset, \ i \neq j, \ i, j = 1, 2, \ldots, m \}, \]

ღერძია: \[|A_n| = (m+1)^n. \]

ღერძია: \[A_k = (m+1)^k. \]

გადახედ არძაშა ხელსაყრელ ხელმძღვანელები\n
\[B_i = \{ (T'_1, T'_2, \ldots, T'_m) | (T_1, T_2, \ldots, T_m) \in A_k \}, \]

ღერძია: \[B_m = \{ (T_1, T_2, \ldots, T_m) | (T_1, T_2, \ldots, T_m) \in A_k \}. \]

მიღებულ ქველობა ხელსაყრელ რამადა-რამადა თანამდებობა ქველობებით უფრო დამოკიდებული m-უფრო ყველაზე ეკითხილება. მასთავარი.
$A_{k+1} = A_k \cup B_1 \cup \ldots \cup B_m$, ამდენი ხოლოდ ნებისმიერი A_k, B_1, \ldots, B_m ფუნქციონალურ მანგლებათა ჯგუფ. წონადობი $|A_k| = (m+1)^k$ არის იმავე

$$|A_{k+1}| = |A_k| + |B_1| + \ldots + |B_m| = (m+1)^k + \ldots + (m+1)^k = (m+1) \cdot (m+1)^k = (m+1)^{k+1}.$$ მივად, თუმცა ჯგუფ სადამბლობამ შეიძლება, როდესაც $n = k + 1$.

შეგვიძლია სიტყვამ ქონის.

შეგვიძლია 12. მიჯ იქნა ბრონ და

$$A = \{ (T_1, T_2) \mid T_1, T_2 \subset X, \ T_1 \cap T_2 = \emptyset, \ T_1 \cup T_2 \neq X \},$$

მიწვა იქნა 3° – 2°.

ლაპარაკობა. შეგვიძლია 12-ის თანახმად $\left| \{ (T_1, T_2) \mid T_1, T_2 \subset X, \ T_1 \cap T_2 = \emptyset \} \right| = 3^2$. ამისთვის გამოიყენება რეგულარულ თამაში (T_1, T_2) თანახმადიან ჯდომაც. ჯგუფი და ჯგუფი T_1-ის ჯგუფით შეიძლება იპოვონ T_2 ან T_1 (T_1, T_2) ფუნქცია, თუმცა თამაში წესით X-ის ქმებლია.

X-ის ქმიტებამ რთულია, როგორც ამ 2° მიწვა. ჩანაწერი, მოპორტ, როგორ X-ის ქმებამ ქმებამ ქმებამ თამაში წესით X-ის ქმებლია, როგორ X-ის ქმებამ T_1 \cup T_2 \neq X იქნა 3° – 2°.

შეგვიძლია სიტყვამ ქონის.

შეგვიძლია 13. მიჯ იქნა ბრონ და

$$A = \{ (T_1, T_2, T_3) \mid T_1, T_2, T_3 \subset X, \ T_1 \cap T_2 = \emptyset, \ i \neq j, \ T_1 \cup T_2 \cup T_3 \neq X \},$$

მიწვა იქნა 4° – 3°.

ლაპარაკობა. შეგვიძლია 12-ის თანახმად X-ის ქმებით ქმებლია ქმება ქმება თანახმად წესით X-ის ქმებლია რთულ 4°.
ოთა ლათინური ორძღვნის ალგებრა სიმრთე (T₁, T₂, T₃), რომელთაგან სახელმწიფო T₁ ∪ T₂ ∪ T₃ = X. ასეთი სიმრთეები რომელთაგან გამოიყენება (T₁, T₂) დახატული წევრი, რომელიც არ შეეხება T₂-ს, თუ T₁ ∪ T₂ ∪ T₃ = X. (T₁, T₂) დახატული თანამედროვე წევრისათვის იმ დროს რომ არც 1-2. ათამსახველ ტერმინში 3°. ასეთი შეკითხები, რომ X-ის წევრი წითელი რომ თანამედროვე (T₁, T₂, T₃) სიმრთეებით თანამედროვე, ორძღვნის სახელმწიფო (T₁ ∪ T₂ ∪ T₃) ტერმინში 4°-3°.

შედეგი დამატებითად.

თერიმში 1.2. თუ |X| = n, მაშინ

\[|Σ_i(X, 5)| = (6° - 3.5° + 3.4° - 3°) : 2.\]

dამატებით. როგორც გვხვდება აღწერილად, მინიჭებული ტერმინში წითელი ჩატარდნა წევრი X-ის წევრი წითელი რომ თანამედროვე (P₁, P₂, P₃, A, B) სიმრთეების რაოდენობის ნაკლები, რომელთაგან სახელმწიფო P₃ ≠ ∅, A ≠ ∅, B ≠ ∅. თუ თითქმის არალტონი, რომ P₃, A და B არ გარდაქმნიათ, მაშინ ასეთი სიმრთეების რაოდენობა უნდა 1.2-ის ათამსახველ ტერმინში დახატული ტერმინში 6°. აქვე გვხვდება (P₁, P₂, P₃, A, B) სიმრთე ჰქონდა უფრო, რომელიც რაოდენობა, აქვე ჩატარდნა ათამში, ტერმინში 5°. აქვე ვუნდ დახოხილია (P₁, P₂, P₃, B) სიმრთე ჰქონდა უფრო, რომელიც რაოდენობა ტერმინში 5°. აქვე გვხვდება (P₁, P₂, A, B) სიმრთე ჰქონდა უფრო, რომელიც რაოდენობა ტერმინში 5°. სულ გახმაურდა 35° რაოდენობის ჰქონდა უფრო.

ამ პროცესის გარეშე თეორემა გახარხმალი (P₁, P₂, B, A, B) სიმრთე ჰქონდა, რომელიც რაოდენობა ათამ 4°. ამასთან ერთად რამდენიმე
სიმრგლები (P₁, P₂, Ø, A, Ø) და (P₁, P₂, P₃, Ø, Ø) სიმრგლეს სრულების მიხედვით. ვ.ა. 6°-3.5° განსაკუთრებით განსაზღვრული 3.4° ოქროს.

ამ მოცულობის ნახატების სახელი მოხდება (P₁, P₂, Ø, Ø, Ø) სიმრგლე სრულების გამომდგარი და სახელი მთელ მცირეთმება ამფით ამ სიმრგლე სრულებით მაგრამ უკავშირებულია ამზად თანამდებობა გზით. ამით თანამდებობა გზით 1.2-ებთან დახმარებით ფორმულა 3°.

მათები, (P₁, P₂, P₃, A, B) სიმრგლე ჯერ შეიძლება სრულებით სრულების სრულებით, სადაც P₃ = Ø, A ≠ Ø და B ≠ Ø არის 6°-3.5° + 3.4° - 3°. ამიტომ, საკმაოოდ მილო მომენტი დარღვტება

\[|\Sigma_i(X, 5)| = (6° - 3.5° + 3.4° - 3°) : 2. \]

თვითოვანი ფასართული.

მაგალითი 1. თუ X = {1, 2, 3}, ოქრო

\[|\Sigma_i(X, 5)| = \frac{6° - 3.5° + 3.4° - 3°}{2} = \frac{3° - 3}{2} = \frac{3° - 3}{2} = \frac{3}{2} = 3. \]

მათები, ამ გენერალური ბუქ გემოქრება შეიძლება სიმრგლე გამოყენებით შანს - ხალხებისხმევით:

\[D_1 = \{1, 2, 3\}, \
D_2 = \{2, 1, 3\}, \
D_3 = \{3, 1, 2\}. \]

მაგალითი 2.. თუ X = {1, 2, 3, 4}, ოქრო

\[|\Sigma_i(X, 5)| = \frac{6° - 3.5° + 3.4° - 3°}{2} = \frac{3° - 3}{2} = \frac{3° - 3}{2} = \frac{3}{2} = 54. \]

მათები, ამ გენერალური ბუქ გამოყენებით X-მეგობრობები შეიძლება შეიძლება ჰაქ: 23
$D_1 = \{1\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}$,
$D_2 = \{1\}, \{1,2\}, \{1,4\}, \{2,4\}, \{1,2,4\}$,
$D_3 = \{1\}, \{1,3\}, \{1,4\}, \{3,4\}, \{1,3,4\}$,
$D_4 = \{1\}, \{1,2\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}$,
$D_5 = \{1\}, \{1,2,4\}, \{2,3,4\}, \{1,2,3,4\}$,
$D_6 = \{1\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}$,
$D_7 = \{1\}, \{1,2,3\}, \{1,2,4\}, \{2,3,4\}, \{1,2,3,4\}$,
$D_8 = \{1\}, \{1,3,2\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}$,
$D_9 = \{1\}, \{1,4,2\}, \{1,4,3\}, \{2,3,4\}, \{1,2,3,4\}$,
$D_{10} = \{2\}, \{2,1\}, \{2,3\}, \{1,3\}, \{1,2,3\}$,
$D_{11} = \{2\}, \{2,1,2\}, \{2,4\}, \{1,4\}, \{1,2,4\}$,
$D_{12} = \{2\}, \{2,3\}, \{2,4\}, \{3,4\}, \{2,3,4\}$,
$D_{13} = \{2\}, \{2,1,3\}, \{2,3,4\}, \{1,3,4\}$,
$D_{14} = \{2\}, \{2,3,1\}, \{2,1,4\}, \{1,3,4\}$,
$D_{15} = \{2\}, \{2,1,3\}, \{2,3,4\}, \{1,3,4\}$,
$D_{16} = \{2\}, \{2,1,3\}, \{2,1,4\}, \{1,3,4\}$,
$D_{17} = \{2\}, \{2,3,1\}, \{2,3,4\}, \{1,3,4\}$,
$D_{18} = \{2\}, \{2,4,1\}, \{2,4,3\}, \{1,3,4\}$,
$D_{19} = \{3\}, \{3,1\}, \{3,2\}, \{1,2,3\}$,
$D_{20} = \{3\}, \{3,1\}, \{3,4\}, \{1,4\}$,
$D_{21} = \{3\}, \{3,2\}, \{3,4\}, \{2,4\}$,
$D_{22} = \{3\}, \{3,1\}, \{3,2,4\}, \{1,2,4\}$,
$D_{23} = \{3\}, \{3,2\}, \{3,4\}, \{1,2,4\}$,
$D_{24} = \{3\}, \{3,1\}, \{3,2,4\}, \{1,2,4\}$,
$D_{25} = \{3\}, \{3,1,2\}, \{3,3,4\}, \{1,2,4\}$,
$D_{26} = \{3\}, \{3,2,1\}, \{3,2,4\}, \{1,2,4\}$,
$D_{27} = \{3\}, \{3,4,1\}, \{3,4,2\}, \{1,2,4\}$,
$D_{28} = \{4\}, \{4,1\}, \{4,2\}, \{1,2,4\}$,
$D_{29} = \{4\}, \{4,1\}, \{4,3\}, \{1,3\}$,
$D_{30} = \{4\}, \{4,2\}, \{4,3\}, \{2,3\}$,
$D_{31} = \{4\}, \{4,1,2\}, \{4,2,3\}, \{1,2,3\}$,
$D_{32} = \{4\}, \{4,1,2\}, \{4,1,3\}, \{2,3\}$,
$D_{33} = \{4\}, \{4,2,1\}, \{4,2,3\}, \{1,2,3\}$,
$D_{34} = \{4\}, \{4,2,1\}, \{4,1,3\}, \{2,3\}$,
$D_{35} = \{4\}, \{4,2,1\}, \{4,3,2\}, \{1,2,3\}$,
$D_{36} = \{4\}, \{4,3,1\}, \{4,3,2\}, \{1,2,3\}$,
$D_{37} = \{5\}, \{5,1\}, \{5,2\}, \{1,2,3\}$,
$D_{38} = \{5\}, \{5,1\}, \{5,2,4\}, \{1,2,3,4\}$,
$D_{39} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{40} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{41} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{42} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{43} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{44} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{45} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{46} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{47} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{48} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{49} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{50} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{51} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{52} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{53} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$,
$D_{54} = \{5\}, \{5,1,2\}, \{5,4,3\}, \{1,2,3,4\}$.

მიღებულია, რომ $V(D, a)$-ის სიმრავლის ღიანგი $B_x(D)$
ნაწილის დონის წარმოდგენა, მიღებულია და დადების უფრო მოქმედ ღიანგის შეხსენება დაინტენცირებული ღიანგის არდა მოქმედ ღიანგი გამოყოფა. ამოგზავნეთ ხელი ღიანგის შეთავაზება.

თეორემა 13. თუ $a \in B_x(D)$ და $D \in \Sigma_1(X, S)$ ღიანგი $|V(D, a)| \leq 4$.

ლადებულია. ლადებული ღიანგი $D' = \{Z_1, Z_2, Z_3\}$. ლადებული ღიანგი, რომ

$|V(D, a) \cap D'| \leq 2$.

ლადებული სარუანდებამდენო, პარამეტრი, არდა მოქმედ ღიანგი $\beta \in B_x(D)$, რომ

$|V(D, \beta) \cap D'|=3$. ღიანგი Z_1, Z_2 და Z_3 ღიანგი $V(D, \beta)$-ს ღიანგი გამოყოფა. ღიანგი
მოქმედთ, რომ ა-ხა არხეულის სერია ლებაგებდა T₁, T₂ და T₃, რომ T₁β = Z₁, T₂β = Z₂ და T₃β = Z₃. ამით გამოთქვა, რომ T₁, T₂ და T₃ არსებობს D’-ის ლებაგებდა.

ჯერ ლაპარაკოვად, რომ T₁, T₂ და T₃-დან არხეული არ გამოუყენება Z₀-ის.

მათისთვის, თუ დაგებულია T₁ = Z₀ (1 ≤ i ≤ 3), შექმნილ D-ს განსაზღვრის თანახმად Z₀ არსებებს D-ს ნებამოძრავი თეთრ ლებაგებდა Tₙ-ის ტრანზიტული შერევანით, ხოლო შენიში Z₀ = Tᵢ, Tᵢ რომ Tᵢ შენიში i ≠ j, 1 ≤ j ≤ 3. ამასთან, Tᵢβ ∈ Tᵢ გ.ა. Z₁ ⊆ Zᵢ. ტო არამხრდა, ერთადიმდე ისე მრავალგრძნობი D-ჰაზარული სტრუქტურის c) პირობაში. ამისთვის, არხეული T₁ არ შეფასება ისე ზე Z₀.

ამით გამოთქვა, რომ T₁, T₂ და T₃-დან არხეული არ გამოუყენება Z₄-ის.

მათისთვის, თუ დაგებულია T₁ = Z₄, შექმნილ D-ს განსაზღვრის თანახმად Tᵢ ⊆ Tₙ = Z₄ (1 ≤ j ≤ 3, i ≠ j). ამასთან, განსაზღვრის T₁β = T₁β გ.ა. Z₁ ⊆ Zₚ. ტო არ შესრულებული, ერთადიმდე დასბმუხული D’-ის არხეული არხეული რიგი დაახლოვათ ისეთი შეადგენს შეთავსებით.

ამისთვის, T₁ ≠ Z₄. ამით T₁, T₂, T₃ ⊈ {Z₀, Z₄}, ამასთან T₁, T₂ და T₃ რიგი D\{Z₀, Z₄}-ის ლებაგებდა გ.ა. D’-ის განსაზღვრებით.

ამასთან, როგორც t ∈ T₁ ∩ T₂, შექმნილ, რიგი T₁β = Z₁, ამასთან tβ ∈ Z₁. ამასთან განსაზღვრის T₁β = Z₁, გამოთქვა tβ ∈ Z₁, გ.ა. tβ ∈ Z₁ ∩ Z₃. ხოლო ნამდვილ შეგრძნობის თანახმად tβ ∈ D, ერთად T₁-ის ცზ თხოვება არხეული D-ის ტრანზიტული ტრანზიტული Z₁-ის და Z₃-ის შეადგენს შეთავსებით. სტორომ ჩასამუშავებლად. ამ შეგრძნობის თხოვება ინთელექტუალური მწვანენათა სივრცე. ამით, |V(D, ß) ∩ D| = 3, გ.ა. შექმნილი არსებობს სურს. ამისთვის, |V(D, ß) ∩ D| < 3.

მათით, რომ არხეული არ გამოიყენოს V(D, a) ≤ 4.
$B_x(D)$ ნამყარაქვსის ა კლონებში შეიძლება ამ სხვაობების გარდა მტკიცებული კლონებით, თუ მოდულარი $a_1, a_2 \in B_x(D)\backslash\{a\}$-თვის განსხვავებული სხვაობით. პირველად $a_1 \cdot a_2 \neq a$.

ქვედღ 14. თუ $D \in \Sigma_1(X,5)$, მიწის უმაღლეს ად ა ხანგრძლივობის ქვათაბამი $B_x(D)$-თვით, თანდათანობით არმაგირთქვენი სხვაობები $|V(Y, a)|=5$ გვხვდება უკვე $B_x(D)$ ნამყარაქვსის გარდა მტკიცებული კლონების ხომალდ.

ღარიმავან. მოცემული, რომ ა მაგი ხანგრძლივი ხანგრძლივობა $B_x(D)$ ნამყარაქვსიკენ, რთი $|V(Y, a)|=5$ და $a_1 \cdot a_2 = a$, თანდათან იტანდება $a_1, a_2 \in B_x(D)\backslash\{a\}$. მიწის $V(Y, a) \subseteq V(D, a)$ (შეყვა [36] თეორემა 1. ქვედღ 6.1.). მოცემული $5 = |V(Y, a)| \leq |V(D, a)|$. იმა. $V(D, a) = 5$. მოცემული მაგარაქვსთან გარემო 13-ი. საერთო გრაფიორთქვენი შეიძლება ტოლი 1-ის ხანგრძლივობა.

ქვედღ 15. თუ $D \in \Sigma_1(X,5)$ და ა ადგი $B_x(D)$ ნამყარაქვსის თანდათანობური სხვაობით, მიწის $|V(Y, a)| \leq |V(D, a)| \leq 4$.

ღარიმავან. თუ ა ადგი $B_x(D)$ ნამყარაქვსის თანდათანობა ან სხვაობების უგარია, მიწის ხანგრძლივი ხანგრძლივობა ა ადგი თანდათანობა მტვალებში. თუ მოცემული შეყვა [36], მიწის $V(Y, a) \subseteq V(D, a)$. იმა. $V(D, a) = 5$-ის ხანგრძლივობი. $|V(Y, a)| \leq |V(D, a)| \leq 4$.

ქვედღ ღარიმავან.
§ 2. Σ₁(𝑋, 5) კლასის ხაზვრადმდენებრივით განსხვავებული ხაზვის ბაზარგარების სახით ხაზვრადმდენებრივი ლექსიკონი ბაზარგარგნები და

\[\Sigma₁(X, 5) \text{ კლასის } D = \{Z₀, Z₁, Z₂, Z₃, Z₄\} ხაზვრადმდენებრივით განსხვავებული ბაზარგარგნები ხაზვით ხაზვრადმდენებრივი ა ბაზარგარგ ბაზარგარგნები განსხვავებულები } f : X → D ახალგახალი მადონალგად:

\[a = \bigcup_{x \in X} \{x\} \times f(x).\]

ის ახალგახალი ქერხი Zᵢ-ი (i = 0, 1, 2, 3, 4) უკეთ შეიძლება ერთმანეთთან არაგარებით Yᵢ-თა.

მაგალით, Y₁ = \emptyset, როგორ Z₁ ხაზვით არ ქერხის ფ - ახალგახალი შეფარგებვით ხაზვით.

განვათავსოთ f : X → D ახალგახალი მადონალგად, ახლამდე Y₀, Y₁, Y₂, Y₃, Y₄ ქვეყნი X-ის ქერქვახელმძღვანობით თანამედროვე ქერქვახელმძღვანობა.

ქვეყნი X-ის ქერქვახელმძღვანობა ქვეყნი D-სა, ახლამდე

\[Y₀ ∪ Y₁ ∪ Y₂ ∪ Y₃ ∪ Y₄ = X.\]

α ხაზვით ბაზარგარგნები ქერხით ქერქვახელმძღვანობა

\[a = (Y₀ \times Z₀) \cup (Y₁ \times Z₁) \cup (Y₂ \times Z₂) \cup (Y₃ \times Z₃) \cup (Y₄ \times Z₄).\] ... (1)

მაგალით, ქვეყნი α ხაზვით ბაზარგარგნები ქერქვახელმძღვანობა (Y₀, Y₁, Y₂, Y₃, Y₄) განსხვავებულ ქერქვახელმძღვანობა და ახლამდე, ქვეყნი ფარგებით ქერქვალმძღვანობა (Y₀, Y₁, Y₂, Y₃, Y₄) განსხვავებულ ქერქვახელმძღვანობა ერთმანეთთან ხაზვით ბაზარგარგნები.

ახლამდე, Bₓ(D) ხაზვარდების ელემენტებს და X ხაზში თანამედროვე ქერქვახელმძღვანობა ქერქვალმძღვანობა (Y₀, Y₁, Y₂, Y₃, Y₄) ქერქვალმძღვანობა შეიძლება ხორცი. სადაც Y₀ ∪ Y₁ ∪ Y₂ ∪ Y₃ ∪ Y₄ = X, ახლამდე ქერქვალმძღვანობა თანამედროვე.
თუ \(|X|=n\), მაშინ, მაგალითად, თით \(f: X \to D\) არის მიწოდებით რიცხოვანი არჩევის 5°. არა. \(B_x(D)\) ჰაბიტანლზე ქალაქების რიცხოვანი არჩევის 5°.

\(B_x(D)\) ჰაბიტანლზე ქალაქები (I) შეიძლება შეიძლება, თუმცა ბიზანტიური შოთლები მხოლოდ შენახილი Y₁-ში, უზრუნველყო ადგილითა ფრთინოთი რიცხოვანი ქალაქები.

ცხრილი შეჭრილამ თუმცა \(B_x(D)\) ჰაბიტანლზე წყვილების რიცხოვანი წყვილების შეჭრილამ. \(B_x(D)\) ჰაბიტანლზე ქალაქი წყვილები რიცხოვანი წყვილებით თუ \(a+a=a\).

თეორემა 2.1. \(B_x(D)\) ჰაბიტანლზე ქალაქები მდინარი და შოთლები შოთლები, ადგილებურმე ქალაქები, რომლებიც გადაუდიდებლა შეჭრილამ გადაუდიდებლამ განთავისუფლება:

- a) \(a=X\times Z\), როგორც \(Z \in D\)-სხვა;

- b) \(a=(Y\times Z)\cup(Y\times Z)\), სხვა \(Z, Z' \in D\) და \(Z \subset Z'\), ხოლო \(Y\) და \(Y'\) ქმნის \(X\) ხობჭმილი არა წყვილებმა, რომ სალოცავ იქნა შეჭრილამ წყვილებრუნება:

\[Y \supset Z \text{ და } Y \supset Z' \];

- c) \(a=(Y_0\times Z_0)\cup(Y\times Z)\cup(Y\times Z_4)\), ხოლო \(Z \in \{Z_1, Z_2\}\) და \(Y_0, Y, Y_4\) ქმნის \(X\) ხობჭმილი არა წყვილებმა, რომ სალოცავ იქნა შეჭრილამ წყვილებრუნება:

\[Y_0 \supset Z_0, \ Y_0 \supset Z, \ Y_0 \cup Y \supset Z_4, \ Y_0 \cup Y \supset Z_4; \]

- d) \(a=(Y_0\times Z_0)\cup(Y_1\times Z_1)\cup(Y_2\times Z_2)\), ხოლო \(Y_0, Y_1\) და \(Y_2\) ქმნის \(X\) ხობჭმილი არა წყვილებმა, რომ სალოცავ იქნა შეჭრილამ წყვილებრუნება:

\[Y_0 \supset Z_1 \cap Z_2, \ Y_0 \supset Z_1, \ Y_0 \supset Z_2, \ Y_0 \cup Y_1 \supset Z_1, \ Y_0 \cup Y_2 \supset Z_2; \]
e) \(a = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_4 \times Z_4) \), სადაც \(Y_0, Y_1, Y_2 \) და \(Y_4 \) წყალის \(X \) სახისაგან ამორჩებულია, რომ ამოცანა ახალ ქვემდებმა აღმოჩენა აღიარებულია.

\[Y_0 \supseteq Z_1 \cap Z_2, \; Y_0 \not\supset Z_1, \; Y_0 \not\supset Z_2, \; Y_0 \cap Y_1 \supseteq Z_1, \; Y_0 \cup Y_2 \supseteq Z_2, \; Y_0 \cup Y_1 \cup Y_2 \neq X; \]

f) \(a = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \), სადაც \(Z_0 \cap Z_3 = \emptyset \), ხოლო \(Y_0 \) და \(Y_3 \) წყალის \(X \) სახისაგან ამორჩებულია, რომ ამოცანა ახალ ქვემდებმა აღმოჩენა აღიარებულია.

\[Y_0 \supseteq Z_0, \; Y_0 \cap Z_3 = \emptyset; \]

g) \(a = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_4 \times Z_4) \), სადაც \(Z_0 \cap Z_3 = \emptyset \), ხოლო \(Y_0, Y_3 \) და \(Y_4 \) წყალის \(X \) სახისაგან ამორჩებულია, რომ ამოცანა ახალ ქვემდებმა აღმოჩენა აღიარებულია.

\[Y_0 \supseteq Z_0, \; Y_1 \supseteq Z_3, \; Y_0 \cup Y_3 \neq X. \]

დაყოფილობა. საქმიანი \(a \)-ს ნორმალური წინაპირობები აქვს სადაც:

\[a = X \times Z, \]

ხოლო \(Z \) არის \(D \) ნახევრობრივის რიცხოვანი ქვემდები. ხოლო \(\Sigma_1 (X, 5) \) ქვლავის \(D \) ნახევრობრივის რიცხოვანი ქვემდები არის შესაძლებელი თუ \(Z \cap X = Z \), ამიტომ

\[(X \times Z) \circ (X \times Z) = X \times Z, \]

მ.ა. \(a \circ a = a \).

მაგალითი. \(a \)-ს ნორმალური წინაპირობები მოითხოვნება \(D \) ნახევრობრივის რიცხოვანი. მ.ა.

\[a = (Y \times Z) \cup (Y' \times Z'). \] ... (1)

თუ \(Z \subseteq Z' \) და \(a \) არის \(B_X (D) \) ნახევრობრივის ლინტრაქტორი ქვემდები, მაშინ ელემენტის შესვლა თითო ქვემდება;

\[(Y \times Z) \circ (Y \times Z) \cup (Y \times Z) \circ (Y' \times Z') = Y \times Z, \] ... (2)

\[(Y' \times Z') \circ (Y \times Z) \cup (Y' \times Z') \circ (Y' \times Z') = Y' \times Z'. \] ... (3)
(2) გამგებიან წარმოქმნით, რომ $Y \cap Z \neq \emptyset \text{ და } Y' \cap Z = \emptyset$. რთული $Y \cup Y' = X$, $X \supseteq Z$ და Z-ს უკანასკნელ არ ჰქონდა Y'-თან, ამოცნობ Y \supseteq Z.

(3) გამგებიან დამოკიდებულება, რომ $Y' \cap Z' \neq \emptyset$. საჭიროა $Z \subseteq Z'$ და $Y \cap Y' = \emptyset$, ამოცნობ Y \supseteq Z'.

ამით, თუ Y ათერიცებული ასომიური ღირსშესილება (1) სახით წარმოქმნით $Z \subseteq Z'$, განწევ Y იგივე, რომ Y \supseteq Z და Y \supseteq Z'.

ამიც ბუნებრივი ათერიცების არჩევის ღირსშესილება (1) სახით. ამოცნობ Z და Z'-ქან D-ზე არ ჰქონდა არჩევის ღირსშესილება.

ამ მეორეშენამდე (2) გამგებიან მიმოქმედა, რომ $Y \supseteq Z$. ამოცნობ, $Y \cup Y' = X \supseteq Z'$ და Z უკანასკნელ არ ჰქონდა Y'-თან, ამოცნობ Y \supseteq Z'.

ამით, Y \supseteq Z და Y' \supseteq Z', ამ მეორეშეა $Y \cap Y' \subseteq Z'$. ესით არჩენ Y და Y' ათერიცებულობის, ამოცნობ Y \supseteq Z' = \emptyset.

მისაღებად, ბოლომ, თუ $B_x(D)$ ხაზგანახლების ათერიცების მოდელიობის არჩევის ღირსშესილება \emptyset ქონია D-მა ხაზგანახლების თანაბრად, ესით უახლოესი რელი ითვლის ღირსშესილება ქვემოთა წილთან ქანით \emptyset. ამინდებთ ხაზგანახლების არჩევის ღირსშესილება წარწერა ექსპერიმენტული სისტემა:

\[
\{Z_0, Z_1\}, \{Z_0, Z_2\}, \{Z_0, Z_4\}, \{Z_1, Z_4\}, \{Z_2, Z_4\}, \{Z_0, Z_3\},
\]

სადაც $Z_0 \cap Z_3 = \emptyset$. ზოგიერთი მეორეშენამდე ათერიცების ათასობითი მიზანები დამსხვერპლის თაოსნობი ა) და b) პირობებში.

ამით ბუნებრივ ათერიცების ათასობითი მიზანები წარმოქმნით ჰქონდა:

\[a = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4),\]

რთული $\alpha \circ \alpha = \alpha$ ამოცნობ მათემატიკის არჩევის ტექნიკით:

\[
(Y_0 \times Z_0) \circ (Y_0 \times Z_0) \cup (Y_0 \times Z_0) \circ (Y_1 \times Z_1) \cup (Y_0 \times Z_0) \circ (Y_2 \times Z_2) \cup (Y_0 \times Z_0) \circ (Y_3 \times Z_3) \cup (Y_0 \times Z_0) \circ (Y_4 \times Z_4) = Y_0 \times Z_0, \quad \ldots (4)
\]

30
(Y_1 \times Z_1) \circ (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \circ (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup \cup (Y_1 \times Z_1) \circ (Y_2 \times Z_2) \cup (Y_1 \times Z_1) \circ (Y_1 \times Z_1) \circ (Y_4 \times Z_4) = Y_1 \times Z_1, \quad \ldots \quad (5)

(Y_2 \times Z_2) \circ (Y_0 \times Z_0) \cup (Y_2 \times Z_2) \circ (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \circ (Y_2 \times Z_2) \cup \cup (Y_2 \times Z_2) \circ (Y_2 \times Z_2) \circ (Y_4 \times Z_4) = Y_2 \times Z_2, \quad \ldots \quad (6)

(Y_1 \times Z_1) \circ (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_3 \times Z_3) \circ (Y_3 \times Z_3) \cup (Y_4 \times Z_4) \cup \cup (Y_3 \times Z_3) \circ (Y_4 \times Z_4) = Y_3 \times Z_3, \quad \ldots \quad (7)

(Y_4 \times Z_4) \circ (Y_0 \times Z_0) \land (Y_4 \times Z_4) \circ (Y_4 \times Z_4) \circ (Y_4 \times Z_4) \cup (Y_4 \times Z_4) \cup (Y_4 \times Z_4) \cup (Y_4 \times Z_4) = Y_4 \times Z_4. \quad \ldots \quad (8)

4. ღამგამოდან გამოიყენება, რომ

Y_0 \cap Z_0 \neq \emptyset, Y_1 \cap Z_0 = \emptyset, Y_2 \cap Z_0 = \emptyset, Y_3 \cap Z_0 = \emptyset, Y_4 \cap Z_0 = \emptyset.

5. ღამგამოდან გამოიყენება, რომ

Y_1 \cap Z_1 \neq \emptyset, Y_2 \cap Z_1 = \emptyset, Y_3 \cap Z_1 = \emptyset, Y_4 \cap Z_1 = \emptyset.

6. ღამგამოდან გამოიყენება

Y_0 \cap Z_0 \neq \emptyset, Y_1 \cap Z_0 = \emptyset, Y_2 \cap Z_0 = \emptyset, Y_3 \cap Z_0 = \emptyset.

7. ღამგამოდან გამოიყენება

Y_1 \cap Z_1 \neq \emptyset, Y_0 \cap Z_2 = \emptyset, Y_1 \cap Z_2 = \emptyset, Y_2 \cap Z_2 = \emptyset.

8. ღამგამოდან გამოიყენება

Y_1 \cap Z_1 \neq \emptyset, Y_0 \cap Z_3 = \emptyset, Y_1 \cap Z_3 = \emptyset, Y_2 \cap Z_3 = \emptyset, Y_4 \cap Z_4 = \emptyset.
სუსტ პარაგრაფი, რომ ის იჩვენებს, რომ \(Y_1 \subseteq Z_1 \).

მაგალითს, (7) დამოკიდებული უნივერსალურად შეიძლება მაინც მართა, თუმცა:

\[Y_1 \subseteq Z_3 \text{ ან } Y_3 = \emptyset. \]

ეწვია 1.1. უნივერსალურად, რომ ის მოითხოვს \(Y_1 \subseteq Z_1 \) და \(Y_3 \subseteq Z_3 \), ამდენად (\(Y_1 \cup Y_2 \)) \(Y_3 \subseteq Z_1 \cap Z_3 \), ანუ \(\emptyset \subseteq Z_1 \cap Z_3 \), რამდენიმე 1.2. თანახმად

\[Z_1 \cap Z_3 = P_1 \cup P_2 \cup A \neq \emptyset. \]

ექვემდე, იგი არის ნიშნავს, რომ იგი \(Y_1 \neq \emptyset \), მაგრამ (5) და (7) ეძღვნება გამოყოფილი უნივერსალურად შემთხვევა იმ შემთხვევაში, როდესაც \(Y_1 = \emptyset \).

მაგალითად, \(Y_1 \cup Y_2 \subseteq Z_1 \) და \(Y_3 \subseteq Z_3 \), ამდენად (\(Y_1 \cup Y_2 \)) \(Y_3 \subseteq Z_2 \cap Z_3 \), რამდენიმე- \(\emptyset \subseteq Z_2 \cap Z_3 \) ანუ \(Z_2 \cap Z_3 = \emptyset \). გამოყოფს იყოს \(Z_1 \cap Z_3 = P_1 \cup P_2 \cup B \neq \emptyset \). ეწვია 1.3. უნივერსალურად, რომ ის \(Y_1 \neq \emptyset \), მაგრამ (6) და (7) ეძღვნება გამოყოფილი უნივერსალურად ერთად შეიძლება იმ შემთხვევაში, როდესაც \(Y_1 = \emptyset \).

ამომდე, იგი არის ნიშნავს, რომ ის \(B_1 (D) \) ბუჯეტირებული ალგორითმები არ აღარ არის ჩამოგორილი ზუსტობიდან ადრე აღარ არის ჩამოგორილი ზუსტობიდან ადრე. იქ, როდესაც \(D \) ბუჯეტირებული ალგორითმები არ აღარ არის ჩამოგორილი ზუსტობიდან ადრე.

მაგალითით, იგი არის \(B_1 (D) \) ბუჯეტირებული ალგორითმები არ აღარ არის ჩამოგორილი ზუსტობიდან ადრე.

თუ ა. ალგორითმები ჩამოგორილი ზუსტობიდან მოდერნიზაციის შემთხვევაში ზუსტობი, \(Z_1 \) და \(Z_2 \) აგრეთვე, მაშინ \(Y_0 = \emptyset \) და \(Y_3 = \emptyset \). ამომდე როგორ \(\alpha \) თუ ალგორითმები აგრეთვე, შეიძლება იმამო, რომ \(Y_1 \cap Y_2 \subseteq Z_1 \cap Z_2 \). გამოყოფს \(Y_1 \cap Y_2 = \emptyset \) და \(Z_1 \cap Z_2 = P_1 \cup P_2 \cup P_3 \neq \emptyset \), როდესაც შეიძლება მოდერნიზაციის შემთხვევაში ზუსტობი, როდესაც \(\alpha \) და \(\beta \) იქნება ალგორითმები აგრეთვე.
რთულ ა კოლომბიტაციური კლასების სირთულები ქალაქის კლასებში D ხატვისხაზებრი სახე ვიკლებზე, ქართველი გაცხრილი ქურთსავალი შემდგომები:

1) \[\alpha = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_4 \times Z_4). \]

2) \[\beta = Y_2 = \emptyset \] და \(Y_3 = \emptyset \). პირობით ქმედით (4)-(8) გათვალისწინების დაუმუშავებით შედგენილია:

\[Y_0 \supseteq Z_0, \ Y_1 \cap Z_1 \neq \emptyset, \ Y_0 \cap Y_1 \supseteq Z_1. \]

3) \[Y_4 \cap Z_4 \neq \emptyset. \] პირობით ქმედით \(Y_0 \cup Y_1 \supseteq Z_1 \) და \(Y_4 \cap Z_4 \neq \emptyset \), პირობით \(Y_0 \cup Y_1 \supseteq Z_4 \).

4) ა. კოლომბიტაციური დიდპლომი მოქანლებში დამოკიდებული ფორმულა შეიძლება პირობით:

\[Y_0 \supseteq Z_0, \ Y_0 \supseteq Z_1, \ Y_0 \cup Y_1 \supseteq Z_1, \ Y_0 \cup Y_1 \supseteq Z_4, \]

წ. მოქანლი შემოწმება თაობები 3) პირობით.

2) \[\alpha = (Y_0 \times Z_0) \cup (Y_2 \times Z_2) \cup (Y_4 \times Z_4). \]

3) \(Y_1 = \emptyset \) და \(Y_2 = \emptyset \) და პირობით, შემდგომ გაცხრილი შემოწმებაში, შედგენილი \(Y_0 \supseteq Z_0, \ Y_2 \supseteq Z_2 \) და \(Z_1 \cap Z_0 = \emptyset \), წ. ა. კოლომბიტაციური დიდპლომი მოქანლებში დამოკიდებული ფორმულა 4) პირობით.

4) \[\alpha = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2). \]

ამ შემოწმებაში (4)-(8) გათვალისწინებით \(Y_3 = \emptyset \) და \(Y_4 = \emptyset \). ამ ფორმულათა გამოყენებით, შედგ.

\[Y_0 \supseteq Z_0, \ Y_0 \cup Y_1 \supseteq Z_1, \ Y_0 \cup Y_2 \supseteq Z_2, \ Y_1 \cap Z_1 \neq \emptyset \] და \(Y_2 \cap Z_2 \neq \emptyset \).
იყოფა \(Y_0 \cup Y_1 \supseteq Z_1, Y_0 \cup Y_2 \supseteq Z_2, \) ანგარიში \((Y_0 \cup Y_1) \cap (Y_0 \cup Y_2) \supseteq Z_1 \cap Z_2.\) პ.ა. \(Y_0 \supseteq Z_1 \cap Z_2.\)

მაგალითს მოცემულ მინიჭებით ა აღმართულია ლურჯისფრადი შეკრულიანი პირობები:

\(Y_0 \supseteq Z_1 \cap Z_2, Y_0 \supseteq Z_1, Y_0 \supseteq Z_2, Y_0 \cup Y_1 \supseteq Z_1, Y_0 \cup Y_2 \supseteq Z_2.\)

ამიტომ, გამოიყენება მინიჭება ა აღმართულია ლურჯისფრად გამოქმედილივად თუთაღლობის d) პირობები.

ამით მოყვითე აღ შემოხედვაში, როგორ ა აღმართულია ლურჯისფრად იმისარგებლობით პირობებით და სქემა-სპილოთი მათემატიკის სახალხო გამოჩენა. იყოფა დიდი რაოდენობა შეთვალყურება, ქმნით სამისული შექმნებით, ქმნით ლურჯ- გამოქმედილივად თუთაღლობის ან გამოქმედილი ქმებები.

მაგარი ა აღმართულია ლურჯისფრად იმისარგებლობით პირობებით და სქემა-სპილოთი მათემატიკის სახალხო გამოჩენა. იყოფა დიდი რაოდენობა შეთვალყურება, ქმნით ლურჯ- გამოქმედილი ლურჯისფრად პირობებით, მითუ ქმნით ლურჯ- გამოქმედილი პირობებით, ქმით ლურჯ- გამოქმედილი სქემა- სპილოთი შექმნილში თუთაღლობის ვერსიაში მათემატიკა შიგათ:

\[a = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_4 \times Z_4). \]

ამ შეთვალყურება (4)-(8) თანხმობაში \(Y_5 = \emptyset \) და ეს თანხმობა შეირჩევთ შიგათლობა მხოლოდ შექმნილში, როგორ

\(Y_0 \supseteq Z_0, Y_0 \supseteq Z_1, Y_0 \cup Y_1 \supseteq Z_1, Y_0 \cup Y_2 \supseteq Z_2, Y_0 \supseteq Z_2, Y_0 \cup Y_1 \cup Y_2 \neq X.\)

პ.ა. ამ შეთვალყურება ა აღმართულია ლურჯისფრად გამოქმედილივად თუთაღლობის e) პირობები.

ამით, დიდი რაოდენობა, თუ თან ა არის \(B_x(D) \) სქემა-სპილოთი პირობებით, შექმნილ და გამოქმედილივად თუთაღლობა შიგათლობა a), b), c), d), e), f) და g) პირობებით ჯერ-ჯერობით.

ამით ეს შეთვალყურება შივრით. გამოყო ა არის \(B_x(D) \) სქემა-სპილოთი მოგვითვალის ამით გამოქმედილი, როგორც თანხმობაში a), b), c), d), e), f) და g) პირობები.
სახელი ენიჭება პირველად და შეკრიბებით, რომ შესაბამი ა ფრთხილებს თეორემათიკური ღონისძიებები.

ერთეულად ა არის \(B_x(D) \) ხაზგარეშების აგრა ღონისძიებები, რომლებიც არჩევინებენ თეორემათ ა) პირველად. ი.წ. ა = \(X \times Z \), ხოლო \(Z \) არის \(D \) ხაზგარეშების ინეგატიურა ღონისძიება, რასთაც მოყვანილი მექანიკა იყო ხაზგარეშები ა იარჩევინებენ მათი ღონისძიებები.

ამჟამად ერთეულად ა არის ძიები ღონისძიება, რომლებიც არჩევინებენ თეორემით ბ) პირველად, ი.წ.

\[
\alpha = (Y \times Z) \cup (Y' \times Z'),
\]

ხოლო \(Z \) და \(Z' \) არის \(D \) ხაზგარეშების აგრა ღონისძიებები, რომ \(Z \subseteq Z' \) და \(Y, Y' \) შექმნები შ. ჩამოქალი ღონისძიების, რომ \(Y \supseteq Z \) და \(Y \supseteq Z' \).

ქოლდა \(Y \supseteq Z \neq \emptyset \), ხოლო \((Y \times Z) \circ (Y \times Z) = Y \times Z \). ამჟამად თუ \(Y \supseteq Z \) და \(Y \cap Y' = \emptyset \), მაშინ \(Y' \cap Z = \emptyset \) და \((Y \times Z) \circ (Y' \times Z') = \emptyset \).

იმის გამოქვეყნებით, რომ \(Z \subseteq Z' \) და \(Y \supseteq Z \), ხოლო \(Y \cap Z' \neq \emptyset \) და \(Y' \cap Z' \neq \emptyset \) ორანსაც გამოქვეყნა ღონისძიება \((Y' \times Z') \circ (Y' \times Z') = Y' \times Z' \). ამჟამად არჩევინებენ ღონისძიებები

\[
\alpha \circ \alpha = ((Y \times Z) \cup (Y' \times Z')) \circ ((Y \times Z) \cup (Y' \times Z')) =
\]

\[
(Y \times Z) \circ (Y \times Z) \cup (Y \times Z) \circ (Y' \times Z') \cup (Y' \times Z') \circ (Y \times Z) \cup (Y' \times Z') \circ (Y' \times Z') =
\]

\[
(Y \times Z) \cup \emptyset \cup (Y \times Z) \cup (Y' \times Z') = (Y \times Z) \cup (Y' \times Z') = \alpha,
\]

ი.წ. ა იარჩევინებენ მათი ღონისძიებები.

ღონისძიება \(B_x(D) \) ხაზგარეშების ა ღონისძიება არჩევინებენ თეორემათ გ) პირველად. ი.წ.

\[
\alpha = (Y_0 \times Z_0) \cup (Y_3 \times Z_3),
\]

ხოლო \(Z_0 \cap Z_3 = \emptyset \) და \(Y_0, Y_3 \) შექმნით შ. ჩამოქალი ღონისძიება, რომ \(Y \supseteq Z_0 \) და \(Y_0 \cap Z_3 = \emptyset \).
\[Y_0 \supseteq Z_0 \] პირობითად გამოყოფილია, რომ \((Y_0 \times Z_0) \circ (Y_0 \times Z_0) = Y_0 \times Z_0\) პირობით \(Y_3 \cap Y_0 = \emptyset\) და \(Y_0 \not \subseteq Z_0\), ასევე \(Y_3 \cap Z_0 = \emptyset\) და \(Y_0 \not \subseteq Z_0\) პირობით გამოყოფილია, რომ
\[(Y_0 \times Z_0) \circ (Y_3 \times Z_3) = \emptyset. \]
\[Y_0 \times Z_0 = \emptyset \] პირობით გათვალისწინებული პირობებით, რომ
\[(Y_3 \times Z_3) \circ (Y_0 \times Z_0) = \emptyset. \]
\(X \subseteq Z_3\) და \(Y_0 \cap Z_3 = \emptyset\), ასევე \(Y_3 \supseteq Z_3\), რის გამო შესაძლოა გვქონეთ გათვალისწინებული
\[(Y_3 \times Z_3) \circ (Y_3 \times Z_3) = Y_3 \times Z_3. \]

ისევე, ჰოლოგრამით, რომ
\[\alpha (\alpha (Y_0 \times Z_0) \cup (Y_3 \times Z_3)) \circ (Y_6 \times Z_0) \cup (Y_3 \times Z_3) \circ (Y_3 \times Z_3) \circ (Y_3 \times Z_3) = \]
\[(Y_0 \times Z_0) \cup (Y_3 \times Z_3) = \alpha, \]

იქ. \(x\) ღრმად პრეკონცეჭებული ღვლობით.

დაგეგმით \(B_x(D)\) ბინარული ფუნქცია ა ღვლობით ჰარმონიული იანგში გ) ჰოლოგრამით. იქ.
\[\alpha = (Y_0 \times Z_0) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4), \]

ასევე \(Z \in \{Z_1, Z_2\}\) და \(Y_0, Y_1, Y_4\) ერთმანეთის აღორძინებით ღირსებრნები, რის \(Y_0 \not \supseteq Z_0\), \(Y_0 \not \not \subseteq Z\), \(Y_0 \cup Y \supseteq Z\), \(Y_0 \cup Y \not \not \supseteq Z\).

\[Y_0 \not \supseteq Z_0 \] პირობითი განვითარებით შეგვხვდეთ გამოყოფილება:
\[(Y_0 \times Z_0) \circ (Y_0 \times Z_0) = Y_0 \times Z_0, \]
\[(Y_0 \times Z_0) \circ (Y \times Z) = \emptyset. \]

მის გათვალისწინებით, რომ \(Y_0 \not \subseteq Z_0\) და \(Z_0 \subseteq Z\), ჰოლოგრამით \(Y_0 \cap Z \not \not = \emptyset\) და

\[(Y \times Z) \circ (Y_0 \times Z_0) = Y \times Z_0. \]

\[Y_0 \not \supseteq Z\] და \(Y_0 \cup Y \supseteq Z\) ჰოლოგრამით შეგვხვდეთ გამოყოფილება, რის \(Y \cap Z \not \not = \emptyset\).

უკვეც \(\alpha\) ღვლობით.
(Y×Z)∘(Y×Z) = Y×Z.

იმდენ გახდა, რომ $Y_0 \supseteq Z_0$ და $Y_4 \cap Y_0 = \emptyset$, დაკავშირებით $Y_4 \cap Z_0 = \emptyset$, მონაცემი

$$(Y_0 \times Z_0) \circ (Y_4 \times Z_4) = \emptyset.$$

$Y_0 \cup Y \not\subseteq Z_4$ პირმოდულმა მოდული $Y_4 \cap Z_4 \neq \emptyset$ და გვჭირდება იგი გამორჩევა:

$$(Y_4 \times Z_4) \circ (Y_4 \times Z_4) = Y_4 \times Z_4.$$

თუ აღნიშნული გამოთვლილი ლურჯი გამორჩევის იგი გამორჩევა:

$$\alpha \circ \alpha = ((Y_0 \times Z_0) \cup (Y \times Z) \cup (Y_4 \times Z_4)) \circ ((Y_0 \times Z_0) \cup (Y \times Z) \cup (Y_4 \times Z_4)) =$$

$$= (Y_0 \times Z_0) \cup (Y \times Z) \cup (Y_4 \times Z_4) = \alpha,$$

რ. ა. გამოთვლილი ლურჯი გამორჩევის.

ამიტომ ა გამოთვლილი სტატიფიკულები თურკეთიშ გ) პირმოდულ. რ. ა.

$$\alpha = (Y_0 \times Z_0) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4),$$

სადაც $Z_0 \cap Z_3 = \emptyset$, ხოლო Y_0, Y_3 და Y_4 წარმოადგენს X ჰიპოთეზის ამო

ფაქტზე მონაცემთა ფაქტზე, რომ

$$(Y_0 \times Z_0) \circ (Y_0 \times Z_0) = Y_0 \times Z_0.$$

ჯგუფში $Y_3 \cap Y_0 = \emptyset$ და $Y_0 \supseteq Z_0$, მინდთ $Y_3 \cap Z_0 = \emptyset$, გვჭირდება იგი გამორჩევა

$$(Y_0 \times Z_0) \circ (Y_3 \times Z_3) = \emptyset.$$

სადაც $Y_0 \supseteq Z_0$ და $Y_4 \cap Y_0 = \emptyset$ პირმოდულმა გამოთვლილ შემთხვევაში რომ

$Y_4 \cap Z_0 = \emptyset$, მონაცემთა

$$(Y_0 \times Z_0) \circ (Y_4 \times Z_4) = \emptyset.$$

თუ $Y_3 \supseteq Z_3$, ამიტომ

$$(Y_3 \times Z_3) \circ (Y_3 \times Z_3) = Y_3 \times Z_3.$$

როგორც $Y_3 \supseteq Z_3$ და $Y_3 \cap Y_0 = \emptyset$, მინდთ $Y_0 \cap Z_3 = \emptyset$. ხოლო პირმოდული

$$(Y_3 \times Z_3) \circ (Y_0 \times Z_0) = \emptyset.$$
სხვა $Y_3 \supseteq Z_3$ სიგრძისათვის გამოიხორცილებს $Y_4 \cap Z_3 = \emptyset$, იმაგრეთაც
$$(Y_3 \times Z_3) \circ (Y_4 \times Z_4) = \emptyset.$$

ჯგუფი $Y_0 \supseteq Z_0$ და $Z_4 \supseteq Z_0$, იმაგრეთ $Z_4 \cap Y_0 \neq \emptyset$, თუმცა დასრულებს
$$(Y_4 \times Z_4) \circ (Y_0 \times Z_0) = Y_4 \times Z_0.$$

თუ $Y_3 \supseteq Z_3$ და $Z_3 \subseteq Z_4$, დასრულები $Y_3 \cap Z_4 \neq \emptyset$, იმაგრეთაც სწორედ გამოიხორცილებს
$$(Y_4 \times Z_4) \circ (Y_3 \times Z_3) = Y_4 \times Z_3.$$

$Z_3 \cup Z_0 = Z_4$ სიგრძისათვის გამოიხორცილებს დასრულება
$$(Y_4 \times Z_0) \circ (Y_4 \times Z_3) = Y_4 \times Z_4.$$

თუ ისეთი a-მა მყოფია, რომ მყოფი a-მა დასრულება გამოიხორცილებს
$$\alpha \circ a = ((Y_0 \times Z_0) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4)) \circ ((Y_0 \times Z_0) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4)) =$$
$$= (Y_0 \times Z_0) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4) = a,$$

α იმაგრეთაც გლობალური ფუნქციაა.

დახუჭავით a ფუნქცია იამოფითი გამოიხორცილება თეორემის d) პარამეტრთან. ე.წ.
$$a = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2),$$

ხოლო Y_0, Y_1, Y_2 ზომის X-ის შემმაგის სხვა ფაზებიდან, თუმცა
$$Y_0 \supseteq Z_1 \cap Z_2, \ Y_0 \nsubseteq Z_1, \ Y_0 \nsubseteq Z_2, \ Y_0 \cup Y_1 \supseteq Z_1, \ Y_0 \cup Y_2 \supseteq Z_2.$$

მაგალითისთვის, თუ $Y_0 \supseteq (Z_1 \cap Z_2) \supseteq Z_0$. ამ შემთხვევაში $Y_1 \cap Z_0 = \emptyset$ და
$Y_2 \cap Z_0 = \emptyset$, თუმცა დასრულად გამოიხორცილება შემდეგი დასრულება
$$(Y_0 \times Z_0) \circ (Y_0 \times Z_0) = Y_0 \times Z_0,$$
$$(Y_0 \times Z_0) \circ (Y_1 \times Z_1) = \emptyset,$$
$$(Y_0 \times Z_0) \circ (Y_2 \times Z_2) = \emptyset,$$
$$(Y_1 \times Z_1) \circ (Y_0 \times Z_0) = (Y_1 \times Z_0),$$
$$(Y_2 \times Z_2) \circ (Y_0 \times Z_0) = Y_2 \times Z_0.$$

თუ $Y_0 \supseteq Z_0$, $Y_0 \nsubseteq Z_1$ და $Y_0 \cup Y_1 \supseteq Z_1$, მაშინ $Y_1 \cap Z_1 \neq \emptyset$, იმაგრეთაც
$$(Y_1 \times Z_1) \circ (Y_1 \times Z_1) = Y_1 \times Z_1.$$

38
ასევე, ხაზდება მყარ კომპლექსები $Y_0 \subseteq Z_0$, $Y_0 \not\subseteq Z_2$ და $Y_0 \cup Y_2 \subseteq Z_2$, გამოიყენება $Y_2 \cap Z_2 \neq \emptyset$.

თუმცა მიზანიყვანი თეორემაზე მივიქწოთ

$$(Y_2 \times Z_2) \circ (Y_2 \times Z_2) = Y_2 \times Z_2.$$

$Y_0 \cup Y_1 \subseteq Z_1$ პრობლემა გამოიყენება მომენტში, თუმცა $Y_2 \cap Z_1 = \emptyset$ სამაგამო გამოყენება

$$(Y_1 \times Z_1) \circ (Y_2 \times Z_2) = \emptyset.$$

ასევე, იმის გამოთ, თუმცა $Y_0 \cup Y_2 \subseteq Z_2$, გამოიყენება $Y_1 \cap Z_2 = \emptyset$. სამაგამო მომენტში

$$(Y_2 \times Z_2) \circ (Y_1 \times Z_1) = \emptyset.$$

იხსოვეთ, როგორ მომგვარება ფორმულის სამაგამო არ ხასიათს გამოყენება.

$$(Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) = a.$$

ა. ა. მომგვარება ყველაზე მაღალი თეორემა.

$$(Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_4 \times Z_4).$$

სადაც Y_0, Y_1, Y_2 და Y_4 წერტილური X ხორცისათვის სხვაობენ ხარჯარი რაოდენობა, თით

$Y_0 \subseteq Z_1 \cap Z_2$, $Y_0 \not\subseteq Z_2$, $Y_0 \not\subseteq Z_1$,
$Y_0 \cup Y_2 \not\subseteq Z_2$, $Y_0 \cup Y_1 \not\subseteq Z_2$,
$Y_0 \cup Y_2 \not\subseteq Z_4$, $Y_0 \cup Y_1 \not\subseteq Z_4$, $Y_0 \cup Y_1 \cup Y_2 \neq X.$

მომგვარება $Y_0 \subseteq Z_1 \cap Z_2 \not\subseteq Z_0$. იხსოვეთ $Y_1 \cap Z_0 = \emptyset$, $Y_2 \cap Z_2 = \emptyset$, $Y_4 \cap Z_0 = \emptyset$ და აღარად ერთი Y_0 გამოყენება სხვადასხვა სითხეების

$$(Y_0 \times Z_0) \circ (Y_0 \times Z_0) = Y_0 \times Z_0,$$
$$(Y_0 \times Z_0) \circ (Y_1 \times Z_1) = \emptyset,$$
$$(Y_0 \times Z_0) \circ (Y_2 \times Z_2) = \emptyset,$$
$$(Y_0 \times Z_0) \circ (Y_4 \times Z_4) = \emptyset,$$
$$(Y_1 \times Z_1) \circ (Y_0 \times Z_0) = Y_1 \times Z_0,$$
$$(Y_2 \times Z_2) \circ (Y_0 \times Z_0) = Y_2 \times Z_0,$$
$$(Y_4 \times Z_4) \circ (Y_0 \times Z_0) = Y_4 \times Z_0.$$

39
\[(Y_4 \times Z_4) \circ (Y_6 \times Z_6) = Y_4 \times Z_4.\]

\[Y_6 \not\subset Z_1 \text{ და } Y_6 \cup Y_1 \supset Z_1 \text{ ითხოვნება გამოთვლისათვის, ორი } Y_1 \cap Z_1 \neq \emptyset, \]
\[Y_2 \cap Z_1 = \emptyset, Y_4 \cap Z_1 = \emptyset, \text{ თუმცა } Y_4 \times Z_1.
\]

\[\begin{align*}
(Y_1 \times Z_1) \circ (Y_1 \times Z_1) &= Y_1 \times Z_1, \\
(Y_1 \times Z_1) \circ (Y_2 \times Z_2) &= \emptyset, \\
(Y_1 \times Z_1) \circ (Y_4 \times Z_4) &= \emptyset, \\
(Y_4 \times Z_4) \circ (Y_1 \times Z_1) &= Y_4 \times Z_4.
\end{align*}\]

ანალოგიურად, \[Y_6 \not\subset Z_2 \text{ და } Y_6 \cup Y_2 \supset Z_2 \text{ ითხოვნება გამოთვლისათვის, ორი }
\[Y_2 \cap Z_2 \neq \emptyset, Y_1 \cap Z_2 = \emptyset, Y_4 \cap Z_2 = \emptyset. \]
\[\begin{align*}
(Y_2 \times Z_2) \circ (Y_2 \times Z_2) &= Y_2 \times Z_2, \\
(Y_2 \times Z_2) \circ (Y_1 \times Z_1) &= \emptyset, \\
(Y_2 \times Z_2) \circ (Y_4 \times Z_4) &= \emptyset, \\
(Y_4 \times Z_4) \circ (Y_2 \times Z_2) &= Y_4 \times Z_2.
\end{align*}\]

\[\text{იმაგრემ თუ } Y_4 \cap Z_1 = \emptyset \text{ და } Y_4 \cap Z_2 = \emptyset, \text{ იმაგრემ } Y_4 \cap (Z_1 \cup Z_2) = \emptyset. \]
\[\text{ი.ვ. } Y_4 \cap Z_4 = \emptyset, \text{ თუმცა }
\[\begin{align*}
(Y_4 \times Z_4) \circ (Y_4 \times Z_4) &= \emptyset.
\end{align*}\]

\[\text{თუმცა } a \circ a = ((Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_4 \times Z_4)) \circ ((Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup \]
\[\cup (Y_2 \times Z_2) \cup (Y_4 \times Z_4)) = (Y_0 \times Z_0) \cup \emptyset \cup \emptyset \cup \emptyset \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup \emptyset \cup (Y_4 \times Z_4) \cup (Y_4 \times Z_4) \cup (Y_4 \times Z_4) \cup \emptyset =
\[= (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_4 \times Z_4) = a,
\]
\[\text{ი.ვ. } a \text{ არძაშვილებულია ლუდზე.}\]

\[\text{ამიტომ თუ } B_x(D) \text{ სრულყოფილია, } a \text{ ლუდზე } \text{დაჭრილია, თუმცა } \text{თუმცა}
\[\text{იმაგრემ } a \text{ არძაშვილებულია ლუდზე.}\]

\[\text{თუთხრო } \text{დამდგარიათ.}\]
§3. $B_x(D)$ სემიტორფიჭევის ძეგლინგზები გამჭვირვალი დათვლილი
ლადიის ტორდოლები

თერგული ტორდოლი სოლომიათი $B_x(D)$ სიმღერეძევა, ხოლო D არა $\Sigma_1(X, 5)$
კლასის სამღერეძია.

თერგული $t \in \{a, b, c, d, e, f, g\}$. $B_x(D)$ სემიტორფიჭევის ძეგლინგზები გამჭვირვალი,
ლადიის ტორდოლები $\Sigma_1(X, 5)$ ტორდობის პირველი ტოდო t-ის თვალზე გამჭვირვალი გამჭირვალი. გვალი a-ში არა
ლადიის ტორდოლები გამჭირვალი კლასიში $\Sigma_1(X, 5)^{1-}$-თა ქრონიკი. გვალი U-თა ლადიის ტორდოლები გამჭირვალი კლასიში $\Sigma_1(X, 5)^{1-}$-თა ქრონიკი. ქრონიკი

$$|I| = |U_a| + |U_b| + |U_c| + |U_d| + |U_e| + |U_f| + |U_g|.$$ 3

თუ ლადიის ტორდოლები $\Sigma_1(X, 5)$-თა ქრონიკი ითვლილიათი D სემიტორფიჭევითი Z_i, Z_j და Z_k ლადიის ტორდოლება, არა
ლადიის ტორდოლები გამჭირვალი კლასიში $\Sigma_1(X, 5)^{1-}$-თა ქრონიკი $U(i, j, k)$-თა.

მაგალითით, ქრონიკი

$$|U_a| = |D| = 5,$$
$$|U_b| = |U(0, 1)| + |U(0, 2)| + |U(0, 4)| + |U(1, 4)| + |U(2, 4)| + |U(3, 4)|,$$
$$|U_c| = |U(0, 1, 4)| + |U(0, 2, 4)|,$$
$$|U_d| = |U(0, 1, 2)|,$$
$$|U_e| = |U(0, 2, 4)|,$$
$$|U_f| = |U(0, 3)|,$$
$$|U_g| = |U(0, 3, 4)|.$$ 3

თეორემა 2.2. თუ $D = \{Z_0, Z_1, Z_2, Z_3, Z_4\} \in \Sigma_1(X, 5)$ და X ხომელწული,
მათ $B_x(D)$ სემიტორფიჭევი გულით ლადიის ტორდოლები გამჭირვალი
$\Sigma_1(X, 5)$ ტორდობის ტორდოლოვანიმ მეთვითი

$$S = \left[(2^{|z_1|^2} - 1) \cdot (3^{|z_2|^2} - 2^{|z_1|^2}) + (2^{|z_2|^2} - 1) \cdot (3^{|z_1|^2} - 2^{|z_1|^2}) \right] \cdot 3^{|z_1|^2} +$$
$$+ (2^{|z_1|^2} - 1) (2^{|z_2|^2} - 1) \cdot 4^{|z_1|^2} + 3 \cdot 2^{|z_1|^2} - 4 \cdot 2^{|z_1|^2} + 2^{|z_1|^2} + 5,$$

რომლი $Z_0 \cap Z_3 \neq \emptyset;$

41
42
განიცხადება, რომ წყვილი T_1 უღლის შეერთებით შორის $2^{[x, z]} - 1$ კარგებისაგან შედგება. მათი სუბსექტში T_2 არის $X \setminus Z'$-ის ნეგატიური შენახვა, მათიდან T_2 უღელთა შეერთებით შორის $2^{[x, z]}$-ის კარგებისა შენახვა.

ამიტომ, ლამბაფეჯილი (T_1, T_2) სახის შესახებ, უღლის შეყვანილი წყვილების ერთეულებს ფუნქციით $- (2^{[x, z]} - 1) \cdot 2^{[x, z]}$. მაშინაც, $b)$ გარეშე აღმართვაზედ ლუცარცებაში შორის გამოყოფილი ფუნქციით

$$(2^{[x, z]} - 1) \cdot 2^{[x, z]} = 2^{[x, z]} - 2^{[x, z]}.$$ ითვალისწინებენ ამ ფორმულას, შემდეგ შედეგის

$$|U(0,1)| = 2^{[x, z]} - 2^{[x, z]},$$
$$|U(0,2)| = 2^{[x, z]} - 2^{[x, z]},$$
$$|U(0,4)| = 2^{[x, z]} - 2^{[x, z]},$$
$$|U(1,4)| = 2^{[x, z]} - 2^{[x, z]},$$
$$|U(2,4)| = 2^{[x, z]} - 2^{[x, z]},$$
$$|U(3,4)| = 2^{[x, z]} - 2^{[x, z]},$$
$$|U_b| = 3 \cdot 2^{[x, z]} - 4 \cdot 2^{[x, z]} + 2^{[x, z]}.$$ ამას ძალიან აღიფძრავა $f)$ გარეშე აღმართვაზედ ლუცარცების აღმართვა.

თუმცა 2.1-ის თანახმად $f)$ გარეშე აღმართვან შედეგ არ აქვთ, როდესად ში $Z_0 \cap Z_3 = \emptyset$.

ლოგიკით T_1 არის $X \setminus (Z_0 \cup Z_3)$-ის ნეგატიური წყვილებისთვის, ხოლო \bar{T}_1 არის T_1-ის ადგილი $X \setminus (Z_0 \cup Z_3)$-ში (ი. ღმირი მოქალაქობა ღალაქში).

Y_0-ით და Y_1-ით აღმართვაზედ შეყვანილ შედეგი შიქრილაება.
\[Y_0 = Z_0 \cup T_1, \]
\[Y_3 = Z_3 \cup T_1. \]

რადგან \(Z_0 \cap Z_3 = \emptyset \), ამიტომ მისი სეკტორიც \(Y_0 \) და \(Y_3 \) წარმოადგენს \(X \) სიმჰორიც ეთეშ დაკარგულობას, რომ ჭერს მისდგომის პროცესში:
\[Y_0 \supseteq Z_0 \; \text{და} \; Y_0 \cap Z_3 = \emptyset. \]

ასევე, თუ 2.1-ის წ) პირთის ხარისხ
\[a = (Y_0 \times Z_0) \cup (Y_3 \times Z_3) \]
მართული მოდელით შექსრილია ფუნც. \(B_X(D) \) ხარისხების ალგებრადებრი კლასი.

ტიტით \(T_1 \) უბრალოდ გამოიყენება თეთრი ფონის \(Y_0 \) და \(Y_3 \)-ს გ.ს. \(T_1 \) უბრალოდ გამოიყენება ლოგიკური კლასი.

ამიტომ წ) გამოიყენება ლოგიკური კლასი.
\[Y = X \setminus (Z_0 \cup Z_3) \]

მართული ქოთი თითოეულის ხარისხით შექსრილია და როდესაც \(Z_0 \cup Z_3 = Z_4 \) მიტომ
\[2^{\min(Z_0,\min(Z_3))} \; \text{დარღვავთ.} \]

ასევე, წ) გამოიყენება ლოგიკური კლასი.
\[a = (Y_0 \times Z_0) \cup (Y_3 \times Z_3) \]

მართული ციკლით მოდელით შექსრილია ფუნც. \(B_X(D) \) ხარისხების ალგებრადებრი კლასი.

ამიტომ წ) გამოიყენება ლოგიკური კლასი.
\[Z = X \setminus (Z_0 \cup Z_3) \]

მართული ქოთი თითოეულის ხარისხით შექსრილია და როდესაც \(Z_0 \cup Z_3 = Z_4 \) მიტომ
\[2^{\min(Z_0,\min(Z_3))} \; \text{დარღვავთ.} \]

ამიტომ წ) გამოიყენება ლოგიკური კლასი.
\[a = (Y_0 \times Z_0) \cup (Y_3 \times Z_3) \]

მართული ქოთი თითოეულის ხარისხით შექსრილია ფუნც. \(B_X(D) \) ხარისხების ალგებრადებრი კლასი.

ამიტომ წ) გამოიყენება ლოგიკური კლასი.
\[Z = X \setminus (Z_0 \cup Z_3) \]

მართული ქოთი თითოეულის ხარისხით შექსრილია ფუნც. \(B_X(D) \) ხარისხების ალგებრადებრი კლასი.

ამიტომ წ) გამოიყენება ლოგიკური კლასი.
\[Z = X \setminus (Z_0 \cup Z_3) \]

მართული ქოთი თითოეულის ხარისხით შექსრილია ფუნც. \(B_X(D) \) ხარისხების ალგებრადებრი კლასი.

ამიტომ წ) გამოიყენება ლოგიკური კლასი.
\[Z = X \setminus (Z_0 \cup Z_3) \]
თერგები $T_1, T_2, T_3, \overline{T_1}, T'_2, T'_1$ არის წყვილა-წყვილი მაჩვენებლია, ანიჭებს Y_0 და Y მაჩვენებები, ასახავს $Y_0 \supseteq Z_0$ და $Y_0 \not\supseteq Z$, რადგამად ტი არის $Z \backslash Z_0$-ში საერთო ჭერდებიანობა.

$$Y_0 \cup Y = Z_0 \cup (T_1 \cup \overline{T_1}) \cup (T_2 \cup T'_2) \cup (T_3 \cup T'_3) =$$

$$= Z_0 \cup (Z \backslash Z_0) \cup (T_2 \cup T'_2) \cup (T_3 \cup T'_3) =$$

$$= Z \cup (T_2 \cup T'_2) \cup (T_3 \cup T'_3).$$

განსაზღვრდეთ $T_2 \cup T'_2 \neq Z_4 \backslash Z$ და $(T_3 \cup T'_3) \cap Z_4 = \emptyset$, ანიჭებს $Y_0 \cup Y \supseteq Z$ და $Y_0 \cup Y \not\supseteq Z_4$, გამოხატებით, Y_0, Y და Y_4 წყვილია X სახარჯის გარე დასაწყობა სრულია, რადგამად $Y_0 \supseteq Z_0$, $Y_0 \not\supseteq Z$, $Y_0 \cup Y \supseteq Z$, $Y_0 \cup Y \not\supseteq Z_4$, ანიჭებს თეორემა 2.1-ის c) პარაგრაფი თანხმდენი

$$\alpha = (Y_0 \times Z_0) \cup (Y \times Z) \cup (Y_0 \times Z_4)$$

მიღებული შესაძლოა დარქვის $B_x(D)$ ნახვაზომების სხელმძღვანელები კომპლექსი.

ნახვაზომი დარქვის $\{T_1, (T_1, T'_1), (T_2, T'_2), (T_3, T'_3)\}$ სახელით მიღებულა სახსრები შეუძლია Y_0, Y_1 და Y_4 სახარჯებმა, და გამოხატებით იქნება, α სხორცნებულმა შეხედვა მიზანსაცავი. ანიჭებს c) განის სხორცნები იქნება იდეი იგიბი გარობათა არსებობათა და მქონეობათა განსხვავება ($(T_1, T_2, T'_2, (T_3, T'_3)$) დარქვის სახელით. აქ სახით T_1 კომპლექსი არის $Z \backslash Z_0$ სახელა შეგრძელება საწყვეტა და უკმაყოფილება. ანიჭებს T_1 კომპლექსი ქვეყანაში ფაქტო 2$^{2|Z_4|}$-1 კასტრების განსხვავება ემახედვა.

ხელმძღვანელი შეთქვა ჰომო კომპლექსი - (T_2, T'_2) არის $Z_4 \backslash Z$-ის ქვეყანაში გარე მაჩვენებლი წყვილი შეთქვა ასახავს ალგორითმთა რომ ტი $T_2 \cup T'_2 \neq Z_4 \backslash Z$. თუმცა 12-ის ქვემდე 1-ის მიზანი არის წყვილა მაჩვენებლი თანხმდენი არის $2^{2|Z_4|} - 2^{2|Z_4|}$.

45
და თუმცა, საწყობის ტექსტი ოპორტუნიტი - (T₁, T₂) არის X \ Z₄ ჰომოფორმის თანახმადებით ობჰარდებული ქვეჯამ. ამჯერ ქვეჯამის კომპლექსის წინ ლატე 1-ის თანახმად არის 3[^x₄].

მიტონ ხალხისთვის შეჯამებისმა გამოქვაბულია, რომ ტომებითან გარდა ოპორტუნიტიც უკეთ შესაძლოა დაბყივრება (T₁, T₂, T₃, T₄) ჰომოფორმის კომპლექსის არის

\[(2[^x₄] - 1) \cdot (3[^x₄] - 2[^x₄]) \cdot 3[^x₄]₄.\]

მაგალობად, გამოთვლილი ზომიერ მილოს ილარჯებით ქვეჯამის კომპლექს. მიტონ ხალხისთვის შეჯამები, გ) სამი ალეგრაბული ქვეჯამი ხალხის არის, რომ 1 Z₀ Z₃ = 0.

მოყვარი ჟამი Z₀ \ Z₃ = Z₄.

T₁ და T₂ ფური X \ Z₄-ის გზელობით თანახმადებით ობჰარდებული, მათთან არის, რომ T₁ \ T₂ \≠ X \ Z₄.

შეჯამებით აღწერილია:

\[Y₀ = Z₀ \cup T₁, \quad Y₃ = Z₃ \cup T₂, \quad Y₄ = (X \setminus (Y₀ \cup Y₃)).\]

მიტონ Z₀ და Z₃ თანახმადებით და T₁ და T₂ არის X \ Z₄-ის თანახმადებით ობჰარდებული, მათთან Y₀ და Y₃ თანახმადებით თანახმადებით არგუმენტი. ამიტომ, Y₀, Y₃ და Y₄ უკეთ ქვეჯამის მიმართ დაბყივრების, რომ Y₀ \ Z₀ და Y₃ \ Z₃, მათთან თეორემა 2.1-ის g) ჟამისთვის სარგებლო a = (Y₀ \ Z₀) \cup (Y₃ \ Z₃) \cup (Y₄ \ Z₄) წარმოადგენს მოთხოვნის არგუმენტ Bₓ(D) ნახვამ.
იყოს ოდექმილებმა ელემენტები. აშ სახის ოდექმილებმა რამდენადაც ოდენს იმორჩილო, რადგან იყო არსებული \((Y_0, Y_1)\) სილამადიდალ მუქვილი. \(Y_0\) და \(Y_1\)-ობრუნებულმა კალახში მარჯნის საერთაშორისო (\(T_1, T_2\)) სილამადიდალ მუქვილი. ეს მუქვილი არის \(X\setminus Z_4\)-ის თბილისიკეთი ქვემოთმეტობით დამოკიდებული მუქვილი, იმახლობელი \(T_1 \cup T_2 \neq X\setminus Z_4\). თეორემა 1.2.-ის ქმნილობა 1-ის ძალიან ამგვარი მუქვილის ხარჯდება არის \(3^{[\text{Z}_0 \setminus Z_4]} - 2^{[\text{Z}_0 \setminus Z_4]}\). მახასიათებლად, როგორ \(Z_0 \cap Z_3 = \emptyset\) შემდეგ გ) განი დეკომნონინტო ბაზებიისათაური თავისთქვამ გამოთვლილი ჯერჯერობით \(\big|U_8\big| = 3^{[\text{Z}_0 \setminus Z_4]} - 2^{[\text{Z}_0 \setminus Z_4]}\). ამის გამოყოფას იგივე d) განი დეკომნონინტო ელემენტებიშ თავისთქვამ..

\[T_1 \text{ თვეში } Z_1 \setminus Z_2\text{-ის ბოლომდენი } \text{საქართველო } \text{ქვესაირაკლით.} T_2 \text{ თვეში } Z_2 \setminus Z_1\text{-ის ბოლომდენი } \text{საქართველო } \text{ქვესაირაკლით.} \text{T}_1\text{-ით ალგორთიმი } T_1 \text{ ბოლომდენი } Z_1 \setminus Z_2\text{-ის ბოლომდენით, } Z_1 \setminus Z_2\text{-ით აღწერილი } T_2\text{-ით ბოლომდენი } Z_2 \setminus Z_1\text{-ით. } T_3, T_3' \text{ და } T_3'' \text{ თვეში } X\setminus Z_4\text{ საქართველო } \text{დაშენებით.}

ექსპერიმენტი ქმნილობა ამონახებს:

\[Y_0 = (Z_1 \cap Z_2) \cup T_1 \cup T_1' \cup T_3, \quad Y_1 = T_2 \cup T_2', \quad Y_2 = T_2 \cup T_3'' . \]

ამით ქმნილობა, რომ \(Y_0, Y_1 \text{ და } Y_2\) ანიჭებენ მუქვილ მოქმედი არ იქნებან. იმახლობელ

\[
Y_0 \cup Y_1 \cup Y_2 = (Z_1 \cap Z_2) \cup (T_1 \cup T_1') \cup (T_2 \cup T_2') \cup (T_3 \cup T_3' \cup T_3') = \\
= (Z_1 \cap Z_2) \cup (Z_2 \setminus Z_1) \cup (Z_2 \setminus Z_1) \cup (X \setminus Z_4) = (Z_1 \setminus Z_2) \cup (X \setminus Z_4) = X.
\]

ამის გამოყოფა, \(Y_0, Y_1 \text{ და } Y_2\) ქმნილობა \(X\) საქართველოს დაშენებით. მაგრამ, \(Y_0 \supseteq Z_1 \cap Z_2\). ხარჯდება \(T_1 \neq Z_1 \setminus Z_2\), ამიტომ \(Y_0 \nsubseteq Z_1\). მაგრამ, ხარჯდება \(T_2 \neq Z_2 \setminus Z_1\), ამიტომ \(Y_0 \nsubseteq Z_2\). ამით ამის გამოყოფა:

\[Y_0 \cup Y_1 \supseteq (Z_1 \cap Z_2) \cup T_1 \cup T_1' = (Z_1 \cap Z_2) \cup (Z_1 \setminus Z_2) = Z_1, \]
პ. 1. $Y_0 \cup Y_1 \subset Z_1$. ანგარიშებიანი: $Y_0 \cup Y_2 \subset (Z_1 \cap Z_2) \cup T_2 \cup \bar{T}_2 = (Z_1 \cap Z_2) \cup (Z_2 \setminus Z_1) = Z_2$.

პ. 2. $Y_0 \cup Y_2 \subset Z_2$. ანგარიშები: მოცემული, რომ Y_0, Y_1 და Y_2 წინააღმდეგ X ნაწილების ყველა დახასიათებელი, რომ:

$$Y_0 \supseteq Z_1 \cap Z_2, \quad Y_0 \supseteq Z_1, \quad Y_0 \supseteq Z_2, \quad Y_0 \cup Y_1 \supseteq Z_1, \quad Y_0 \cup Y_2 \supseteq Z_2, \quad$$

ანგარიში თვრის 2.1-ის d) პარადოქსის სურათი.

$$\alpha = (Y_0 \cup Z_0) \cup (Y_1 \cup Z_1) \cup (Y_2 \cup Z_2)$$

ქართული მათემატიკური ფუნქცია $B_x(D)$ სახელმწიფომ ადგილმდებარეობს ლეჯენდაში. ის ლეჯენდაშის იდენტიფიკაციის ფუნქციის სიდენო, რომელიც გამოიყენება ლეჯენდაში D. ის იყენებენ შემდგომობრ ($(T_1, T_2, (T_3, T_4, T_5))$) სახელმწიფო ანგარიშთ გამოიყენება ((Y_0, Y_1, Y_2)) ლეჯენდაში სახელმწიფო.

ანგარიში 2.1-ის d) განის აღმოსავლეთიან იდენტიფიკაცია ($(T_1, T_2, (T_3, T_4, T_5))$) სახელმწიფო.

ას საქმისგან ჰასუკი კომპლექსი - T_1 ორი $Z_1 \setminus Z_2$ ნაწილების ნაწილობრივ საერთო ქვემოხვრევა. ანგარიში გამოიყენება პირველ კომპლექსის ნამდვილი ფუნქცია $(2^{[Z_1 \cup Z_2]} - 1)$. მიღებულ კომპლექსი - T_2 ანუ $Z_2 \setminus Z_1$ ნაწილების ნაწილობრივ საერთო ქვემოხვრევა, ანგარიში გამოიყენება მიღებულ კომპლექსის ქვემოხვრევა $2^{[Z_1 \cup Z_2]} - 1$.

შესახებ კომპლექსი - (T_3, T_4, T_5) არის $X \setminus Z_4$ საზოგადო სადავალთან, რ.წ. ფაზით-ფაზით თანასაჯებით ქვემოხვრევათა ფაზა დახმარებით სახელმწიფო, რომ $T_3 \cup T_4 \cup T_5 = X \setminus Z_4$. ანგარიში გამოიყენება ინტერვალ T ანუ T_3, ანუ T_4 ანუ T_5 საზოგადო ფაზაში გამოიყენება T-ს, შემდგომად ამჟამ ((T_3, T_4, T_5)) სახით საზოგადო ფაზა გამოიყენება, რომელიც ((T_3, T_5)) ფაზაში ფაზა გამოიყენება. ამ ფაზაში ნამდვილი მოცემული და 12-ის თანახმად არის $3^{[X \setminus Z_4]}$. ანგარიშმა d) გაიახს აღმოსავლეთიან
თავშეფლობა წინაპირობა დამთავრებულ ფორმულათ:

$$|U_0| = (2^{2|x_z|} - 1) \cdot (2^{2|x_{z_2}|} - 1) \cdot 3^{x_{z_3}}.$$

ამით ტანჯარა ე) გამო თავმჯობით არევლინგის ქართულად:

ქართულად, T_1 და T_2 შესასრულად არის $Z_1 \setminus Z_2$-ისა და $Z_2 \setminus Z_1$ გაზომილება.

![Diagram](attachment:diagram.png)

საჯაროდ წყალმადიდანად. T_1-ის აღსანიშნავი T_1-ის დამთავრება $Z_1 \setminus Z_2$-მა, ხოლო T_2-ის აღსანიშნავი T_2-ის დამთავრება $Z_2 \setminus Z_1$ ხანგრძლივობა (ახ. ლანცხმა). დამთავრება, T_1, T_2 და T_3 არის $X \setminus Z_4$-ის გაზომილება წყალმადიდანად ქართულად, ხოლო $T_1 \cup T_1' \cup T_2' \neq X \setminus Z_4$.

აღსრულ შესახებად, რომ T_1, T_2 და (T_3, T_1', T_2') შესასრულად განსხვავებით იქნა Y_0, Y_1, Y_2 და Y_4-ის წყალმადიდანად, რომლებით მთლიანად შედგება დამთავრება:

$$Y_0 = (Z_1 \cap Z_2) \cup T_1 \cup T_2 \cup T_3,$$
$$Y_1 = T_1',$$
$$Y_2 = T_2 \cup T_3',$$
$$Y_4 = X \setminus (Y_0 \cup Y_1 \cup Y_2).$$

აღსრულ შესახებად იქნა Y_0, Y_1, Y_2 და Y_4 წყალმადიდანად თქვენგარ-თყალ წყალმადიდანად და აღსრულ ამ დამთავრებებები:

$$Y_0 \cap Z_1 \subseteq Z_2, \ Y_0 \nsubseteq Z_1, \ Y_0 \nsubseteq Z_2, \ Y_0 \cup Y_1 \supseteq Z_1, \ Y_0 \cup Y_2 \supseteq Z_2,$$
$$Y_0 \cup Y_1 \subseteq Z_4, \ Y_0 \cup Y_2 \nsubseteq Z_4, \ Y_0 \cup Y_1 \cup Y_2 \neq X.$$
თვალსაზრის 2.1-ის ე) თანამშრომლების ობიექტი $\alpha = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_4 \times Z_4)$ ფასების მიმართული ერთეულები ბუნებრივად ხდება $B_X(D)$ თაღლისმაგრევის ალგორითმმა სხვადასხვა სხვადასხვა ტერმებით (ქვემოთ Y_0, Y_1, Y_2, Y_4) თაღლისმაგრევი თაღლისმაგრევი ალგორითმმა. ამ სიტყვების ქვემოთ T_1, T_2, (T_3, T_4, T_5) გახსნილად ხდება თაღლისმაგრელთათ ქვემოთ.

მათინა, რომ გახსნილებული T_1 და T_2 ხდებიათათ თაღლისმაგრელთათ ქვემოთ ტერი $2^{[Z_1]} - 1$ და $2^{[Z_1]} - 1$.

მოგვხდათ თანამშრომელთათ $T_1, T_2, (T_3, T_4, T_5)$ ითხოვი X \ Z_4 -ის სჯენელ-ჯენელი თაღლისმაგრელთ ქვემოთ გახსნილად თაღლისმაგრელთათ თაღლისმაგრელთ წყალობა, რომ $T_1 \cup T_2 \cup T_3 \neq X \ Z_4$. ამიტომ მათი ტერი 12 ის ხდება 2-ის თანამშრომელთ, იქედან $4^{[Z_1]} - 3^{[Z_1]}$.

მიგვხდათ, რომ გახსნილებული $T_1, T_2, (T_3, T_4, T_5)$ ხდებიათათ თაღლისმაგრელთ $2^{[Z_1]} - 1(2^{[Z_1]} - 1)(4^{[Z_1]} - 3^{[Z_1]})$-ს დარღვით.

ამიტომ, $B_X(D)$ თაღლისმაგრელთ $e)$ თანამშრომელთათ თაღლისმაგრელთ ქვემოთ ღირსმაგრეგმო გამომხმარებლი თორმეტია მონაცემები. ჩვენი

$$|U_e| = |U(0, 1, 2, 4)| = (2^{[Z_1]} - 1)(2^{[Z_1]} - 1)(4^{[Z_1]} - 3^{[Z_1]}).$$

თანამშრომელი გამომხმარებლი:

$|U_a| = 5,$
$|U_b| = 3 \cdot 2^{[Z_1]} - 4 \cdot 2^{[Z_1]} + 2^{[Z_1]},$
$|U_c| = |U_{014}| + |U_{024}| = 3^{[Z_1]} \cdot (2^{[Z_1]} - 1)(3^{[Z_1]} - 2^{[Z_1]} - 1)(3^{[Z_1]} - 2^{[Z_1]} - 1),$
$|U_d| = (2^{[Z_1]} - 1)(2^{[Z_1]} - 1) \cdot 2^{[Z_1]}$,$
$|U_e| = (2^{[Z_1]} - 1) \cdot (2^{[Z_1]} - 1)(4^{[Z_1]} - 3^{[Z_1]}),$ $|U_f| = 2^{[Z_1]}.$

50
\|
U_g \| = 3^{|x_{12}|} - 2^{|x_{12}|}.

საერთო ოფერაცის ქვეყანა Z_0 \cap Z_3 \neq \emptyset, და გამოყენებით:
\[
|U| = |U_a| + |U_b| + |U_c| + |U_d| + |U_e| = 5 + 3 \cdot 2^{|x_{02}|} - 4 \cdot 2^{|x_{12}|} + 2^{|x_{03}|} + 3^{|x_{12}|} \cdot \left(2^{|z_{12}|} - 1\right) \cdot \left(3^{|z_{12}|} - 2^{|z_{12}|}\right) + 3^{|x_{12}|} \cdot \left(2^{|z_{12}|} - 1\right) \cdot \left(3^{|z_{12}|} - 2^{|z_{12}|}\right) + \left(2^{|z_{12}|} - 1\right) \cdot \left(3^{|z_{12}|} - 2^{|z_{12}|}\right) + 2^{|z_{12}|} \cdot \left(3^{|z_{12}|} - 2^{|z_{12}|}\right) + \left(2^{|z_{12}|} - 1\right) \cdot \left(3^{|z_{12}|} - 2^{|z_{12}|}\right) + 4^{|x_{12}|} \cdot \left(2^{|z_{12}|} - 1\right) \cdot \left(2^{|z_{12}|} - 1\right),
\]

მო. საერთო ოფერაცია Z_0 \cap Z_3 = \emptyset, დაგიხილავთ გამოყენება S = |U'| = |U| + |U_f| + |U_g|.

თუმცა ჯგუფი Z_0 \cap Z_3 = \emptyset, დაგიხილავთ გამოყენება S = |U'| = |U| + |U_f| + |U_g|.

\[
S = \left[(2^{|z_{12}|} - 1) \cdot \left(3^{|z_{12}|} - 2^{|z_{12}|}\right) + \left(2^{|z_{12}|} - 1\right) \cdot \left(3^{|z_{12}|} - 2^{|z_{12}|}\right) \right].
\]

\[
3^{|x_{12}|} + \left(2^{|z_{12}|} - 1\right) \cdot \left(2^{|z_{12}|} - 1\right) \cdot 4^{|x_{12}|} + 2^{|z_{12}|} \cdot 2^{|x_{02}|} - 4 \cdot 2^{|x_{12}|} + 4 \cdot 2^{|x_{12}|} + 2^{|x_{12}|} + 5.
\]

ხოლო ჯგუფი Z_0 \cap Z_3 = \emptyset, დაგიხილავთ გამოყენება გულისხმობა.

\[
S = \left[(2^{|z_{12}|} - 1) \cdot \left(3^{|z_{12}|} - 2^{|z_{12}|}\right) + \left(2^{|z_{12}|} - 1\right) \cdot \left(3^{|z_{12}|} - 2^{|z_{12}|}\right) \right].
\]

\[
3^{|x_{12}|} + \left(2^{|z_{12}|} - 1\right) \cdot \left(2^{|z_{12}|} - 1\right) \cdot 4^{|x_{12}|} + 3 \cdot 2^{|x_{02}|} - 4 \cdot 2^{|x_{12}|} + 2^{|x_{12}|} + 5.
\]

გამოთქვათ თავისუფალ შედგენილები.

აღყენება: მეოთხე X = \{1, 3, 3\}, D = \{\{1\}, \{1; 2\}, \{1; 3\}, \{2; 3\}, \{1; 2; 3\}\} და

\[
Z_0 \cap Z_3 = \emptyset, დაგიხილავთ
\]

\[
S = \left[(2^1 - 1) \cdot (3^1 - 2^1) + (2^2 - 1) \cdot (3^1 - 1)\right] \cdot 3^0 + \left(2^1 - 1\right) \cdot (2^1 - 1) \cdot 4^0 + 3 \cdot 2^2 - 4 \cdot 2^0 + 2^1 + 3^0 + 5 = 2 + 1 + 12 - 4 + 2 + 1 + 5 = 19.
\]
§ 4. $\Sigma_1(\mathbb{X}, \mathbb{S})$ კატეგორია ბაზისთან გამჭვირვალე ბაზისთან გამჭვირვალე პრემასთან გამჭვირვალე ბაზისთან გამჭვირვალე პრემასთან გამჭვირვალე ბაზისთან გამჭვირვალე პრემასთან გამჭვირვალე პრემასთან გამჭვირვალე პრემასთან გამჭვირვალე პრემასთან გამჭვირვალე პრემასთან გამჭვირვალე პრემასთან გამჭვირვალე ბაზისთან გამჭვირვალე ბაზისთან გამჭვირვალე ბაზისთან გამჭვირვალე პრემასთან გამჭვირვალე ბაზისთან გამჭვირვალე პრემასთან გამჭვირვალე ბაზისთან გამჭვირვალე პრემასთან გამჭვირვალე პრემასთან გამჭვირვალე პრემასთან გამჭვირვალე ბაზისთან გამჭვირვალე ბაზისთან გამძღვარ და მაქვს და ბაზისთან გამძვარ და მაქვს და ბაზისთا}{

(1)
\[(Y \times Z) \circ (\cup(T, Z_i)) \circ (Y \times Z) = Y \times Z, \]

(2)
\[(Y \times Z) \circ (\cup(T, Z_i)) \circ (Y' \times Z') = \emptyset, \]

(3)
\[(Y' \times Z') \circ (\cup(T, Z_i)) \circ (Y' \times Z') = Y' \times Z', \]

(4)
\[(Y' \times Z') \circ (\cup(T, Z_i)) \circ (Y \times Z) = \emptyset. \]
(2) გასაგები შესთვლილია მონაცემი, ორი Z სიმირთვების თანაბრძანებით ყოფილი T-ის შესახებ Z_ი-თან საერთო ლადგზეთი არ გამოიხატო Y'-შ. ი.ა. Y'∩Z_i=Ø. გარდავალი Y_UN Y'=X⊇Z, ამოცმებ Y⊇Z_i, რეგულარულ სიპრ. გარდა Y⊇Z_i, რაც ყოფილი Z_i-ის T_i შესახებ გამოსახულია ბ-წა სხვაობა თანამედროვე T_i∩Z≠Ø.

ამამციქვეთ, (3) და (4) გასაგები შესთვლილია გამოთავისუფლებით. თუ Z_j⊇Z_i, მაშინ ყოფილი Z_j-ს T_j შესახებ გამოსახულია ბ-წა თან A. მაშინ T_j∩Z_j≠Ø.

გარდავალ D რბის ხარჯვამომცველი, თანამედროვე UZ_i და UZ_j იშვიათი D-ს სამნაცველოდ ლადგზეთი. ი.ა. UZ_i=Z_m და UZ_j=Z_n. გარდავალ, რომ Y⊇Z_m და Y⊇Z_n. რეგულარულ რადგირენით Y∩Y⊇Z_m∩Z_n ინგ. Ø⊇Z_m∩Z_n. ი.ა. Z_m∩Z_n=Ø. Σ_1(Χ, Y) იშვიათი ხარჯვამომცველი თანამნაცველოდ ლადგზეთი რადგირენით შესთვლილია იმით გამოთავისუფლებით Z_i და Z_j, რადგირენით გენერალი:

\[
\begin{align*}
\text{აქ: } Z_0∩Z_1=Ø.
\end{align*}
\]

ამიტომ, გარდავალ, რომ თუ \(a=(Y×Z)∪(Y'×Z') \) არა მექანიკებზე ლადგზეთი, მაშინ Z და Z' შესთვლილიყვნენ არგუმენტით შესთვლილია Z_0 და Z_1, რადგირენით გენერალი:

\[
\begin{align*}
\text{ა) } Y⊇Z_0 & \text{ დ. } Y'⊇Z_3, \\
\text{ბ) } Y⊇Z_3 & \text{ დ. } Y'⊇Z_0.
\end{align*}
\]

როგორ Y⊇Z_0 და Y'⊇Z_1, მაშინ (2) გასაგები გამოთავისუფლებით, რომ Z შესთვლილიყვნენ არგუმენტით გენერალი შესთვლილი T_0.

მართვით, გარდავალ რადგირენით განვანახოთ, რომ Y⊇Z_2 და Z_3-ის უკან D სიმირთვები ყოფილ ლადგზეთი არ გამოიხატოთ T-შ. ამოცმებ გარდა თუ შესთვლილი არგუმენტი T_i არ ქართულ გენერალი შესთვლილ Z-თან, გარდა T_0-ის, ამიტომ, რადგირენ \(UT_i=X⊇Z, \) ამოცმებ T_0⊇Z.
ანსამბლზე, (4) გამოვიყოვნე განთავსებულება, რომ Z'-მა აქვს წარმატება შემდეგ T_3 და სახელში $T_3 \supseteq Z'$.

არსებულ, ხოლო, როდე როგორ $Y \supseteq Z_0$ და $Y' \supseteq Z_3$, სადაც $T_0 \supseteq Z$ და $T_3 \supseteq Z'$. გამოვიყოვ a განთავსებულება ზოგ ხოლო როგორ: $\emptyset = T_0 \cap T_3 \supseteq Z \cap Z'$, წ.ა. $Z \cap Z' = \emptyset$.

როდე $Y \supseteq Z_3$ და $Y' \supseteq Z_0$, სადაც Z-მა აქვს წარმატება შემდეგ T_3, ხოლო Z'-მა აქვს წარმატება შემდეგ T_0, სახელში $T_0 \supseteq Z'$ და $T_3 \supseteq Z$. და სხვაობდა, $\emptyset = T_0 \cap T_3 \supseteq Z \cap Z'$, წ.ა. $Z \cap Z' = \emptyset$.

არსებულ, თუ Z და Z'-გას არსებობს ხოლო როგორ $a \in Y \times Z \cup (Y' \times Z')$ რეგულარული სტრუქტურა და $a = (Y \times Z) \cup (Y' \times Z')$ რეგულარული სტრუქტურა, სადაც $Z \cap Z' = Z_3 \cap Z_0 = \emptyset$, და Y, Y' მისაღებმა X სხვაობიან უნდა შეუძლებოდნენ, რომ a იყო რეგულარულ სტრუქტურა.

$$\begin{align*}
\text{ა)} \quad & \begin{cases}
Y \supseteq Z_0 \\
Y' \supseteq Z_3
\end{cases} \quad \text{და} \\
\text{ბ)} \quad & \begin{cases}
Y \supseteq Z_3 \\
Y' \supseteq Z_0
\end{cases}
\end{align*}$$

პრობლემური

ა. განთავსე ზომილია შემდეგ რუკა.

ბ განთავსე $Z \cap Z' = Z_3 \cap Z_0 = \emptyset$ და Y და Y' მისაღებმა X სხვაობიან უნდა შეიძლება. რომ $Y \supseteq Z_3$ და $Y' \supseteq Z_0$. ეს რუკა, რომ $a = (Y \times Z) \cup (Y' \times Z')$ არჩეული რეგულირებული სტრუქტურა.

ჯ. განთავსე $b = (T_0 \times Z_0) \cup (T_3 \times Z_3)$, ხოლო $T_0 \supseteq Z'$ და $T_3 \supseteq Z$.

ჟ. გამოვიყო a პრობლემური. იმ ხელსაყუთებელ სტრუქტურა გამოყო$$(Y \times Z) \circ ((T_0 \times Z_0) \cup (T_3 \times Z_3)) \circ (Y' \times Z') = ((Y \times Z) \circ (T_0 \times Z_0) \cup (Y' \times Z')) \circ (T_3 \times Z_3) \circ (Y \times Z) = Y \times Z,$$

$$(Y \times Z) \circ ((T_0 \times Z_0) \cup (T_3 \times Z_3)) \circ (Y' \times Z') = (Y \times Z_3) \circ (Y' \times Z') = \emptyset,$$

$$(Y' \times Z') \circ ((T_0 \times Z_0) \cup (T_3 \times Z_3)) \circ (Y' \times Z') = ((Y' \times Z_0) \cup \emptyset) \circ (Y' \times Z') = Y' \times Z',$$

$$(Y' \times Z') \circ ((T_0 \times Z_0) \cup (T_3 \times Z_3)) \circ (Y' \times Z') = (Y' \times Z_3) \circ (Y' \times Z') = \emptyset.$$
მიღწევენ, რომ მოცემული პრობლემები სრულდება (1)-(4) ფორმულები.

პირველად, ა არის $B_x(D)$ ნახტარვალების ლანჯვარობები.

ახლა გამოვალ ენათოვანები, რომ რიცხვი $Y \supseteq Z_0$ და $Y \supseteq Z_4$, შეიძლება ა ერჩიო ხa ნახტარვალების ლანჯვარობები.

ამით საჭიროა იმის გამოთქვა ლანჯვარობას.

4.2-ე თეორემა, $Z, Z' \in D$ და $Z \subset Z'$. მონიშვი, რომ $a = (Y \times Z) \cup (Y' \times Z')$ ითვალისწინება $B_x(D)$ ნახტარვალების ლანჯვარიქვენი ლანჯვარებზე გაყოვნების და ბადსკაჟზე, რომ ამისთვის უნდა განთავსოთ

\[a) \begin{cases} \ Y \supseteq Z_0 \\ \ Y \not\supseteq Z_4 \end{cases} \]

\[b) \begin{cases} \ Y \supseteq Z_3 \\ \ Y \not\supseteq Z_4 \end{cases} \]

ლანჯვარობები.

მემკვლევად, თეორემი $a = (Y \times Z) \cup (Y' \times Z')$ არის $B_x(D)$ ნახტარვალების ლანჯვარიქვენი ლანჯვარებზე და $Z \subset Z'$. შეიძლება, გამოთქვა არქექი თანამედგენი $\beta = \cup (T_i \times Z_i)$, რომ ჩაწვრები (1), (2) და (3) გამოთქვა.

(1) და (2) თეორემების შექმნილება დასრულდა, თუმცა რიცხვი Z სხეულისთვის იმისგან, რომ T_i სქედისთვის შესახებ ზე Z_i სხეულისთვის მოსაზრე Y სხეული. შეიძლება Y მოთავსო უკვე Z სხეულისთვის გათელამაში. გარდანიშნულია, რომ $Y \supseteq Z_i$, სხვა უზრუნვით ი შექმნილების შექმნილება პირთაღ $T_i \cap Z = \emptyset$.

(3) თეორემას შექმნილება ითვალისწინებს რიცხვი Z_i, რომ $T_k \cap (Z' \setminus Z) \neq \emptyset$, $T_k \setminus Z = \emptyset$ და T_k სქედისთვის შესახებ ზე Z_k სხეულისთვის ლანჯვარიქვები გაყოვნები ბალახზე. $Z_k \cap Y' \neq \emptyset$. მოცემუდე, Y' შეუეშო D სქედისთვის სექტორით გაყოვნები ბალახზე. ეს ნიშნავს, რომ Y არ მოთავსება Z_4-ზე, გარდა $Y \not\supseteq Z_4$.
ახლოს, თუ a რეგულარულია გამოყენებით B, (D) ხაზგანჯერით, მაშინ Y და Y' ჭრისთან X სიმრავლეში იყოს დახრიცხებით, რომ ზოგადად პირობები Y ⊆ Z₀ და Y ∉ Z₄.

თვითანად Z₀ ⊆ Z₁ ⊆ Z₄ და Z₀ ⊆ Z₂ ⊆ Z₄, ამდენთ ჩვენ გვქონით: თუ a = (Y × Z) ∪ (Y' × Z') არის B, (D) ხაზგანჯერით მნიშვნელოვანი გამოყენებით, სადაც Z ⊆ Z', მაშინ აქტიურად იყოს თითო ტერმინი

\[
\begin{align*}
\text{a)} & \quad \begin{cases} Y \subseteq Z₀ \\ Y \not\subseteq Z₄ \end{cases} & \text{b)} & \quad \begin{cases} Y \subseteq Z₃ \\ Y \not\subseteq Z₄ \end{cases}
\end{align*}
\]

დამოკიდებულებულია.

ლეგით სვლენისთან დამატებულებით.

ახლა კორპუს, Z, Z' ∈ D, Z ⊆ Z', Y და Y' ჭრისთან X სიმრავლის იყო დახრიცხებით, რომ Y ⊆ Z₀ და Y ∉ Z₄. გაქვთ თითო რომ a = (Y × Z) ∪ (Y' × Z') არის B, (D) ხაზგანჯერით მნიშვნელოვანი გამოყენებით.

ვინაირად, β = (T₀ × Z₀) ∪ (T₃ × Z₃), ხოლო T₀, T₃ ჭრისთან X სიმრავლის იყო დახრიცხებით, რომ T₀ ⊆ Z და T₀ ∉ Z'.

მონაკვეთი პირობებიდან ადგილობრივ მიღებული, რომ

T₃ ∩ Z = ∅, Y' ∩ Z₀ = ∅, Y' ∩ Z₃ ≠ ∅, T₃ ∩ Z' ≠ ∅.

ამ პირობებიდან გამოყოლებულია მოდელები:

\[
\begin{align*}
(Y × Z) \circ ((T₀ × Z₀) ∪ (T₃ × Z₃)) \circ (Y × Z) &= (Y × Z) \circ (T₀ × Z₀) ∪ (Y × Z) \circ (T₃ × Z₃)) \circ (Y × Z) = (Y × Z₀) ∪ (Y × Z₃) = Y × Z₀, \\
(Y × Z) \circ ((T₀ × Z₀) ∪ (T₃ × Z₃)) \circ (Y' × Z') &\circ (Y × Z) = (Y × Z₀) \circ (Y' × Z') = (Y × Z₀) \circ (Y' × Z') = ∅, \\
(Y × Z) \circ ((T₀ × Z₀) ∪ (T₃ × Z₃)) \circ (Y' × Z') &= (Y × Z₀) \circ (Y' × Z') = ∅, \\
(Y × Z) \circ ((T₀ × Z₀) ∪ (T₃ × Z₃)) \circ (Y' × Z') &= (Y × Z₀) \circ (Y' × Z') = ∅,
\end{align*}
\]

მოსალოდ, რომ სრუტებიდან (1), (2) და (3) რომლებიც, რადგან წინამდე, რომ a არის B, (D) ხაზგანჯერით მნიშვნელოვანი გამოყენებით.

ამსელისთან დამატებულებით, რომ T₃
ამოცანა ა უწოდებს \(B_x (D) \) ხაზი. თავისმგებლობა გამოყვანილი ოქროვად.

ლაპარაკი სოკოლოვს სახალიანობის და მოხიდიან ლურჯს ღირსხილავენ.

ლადა 43. თა

\[
\alpha = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4)
\]

არსებულ ხაზი. თავისმგებლობა გამოყვანილი ოქროვად და \(Y_i \neq \emptyset \), ამგვა
\(Y_1 = \emptyset \) და \(Y_2 = \emptyset \).

ლადამსუფლის. თავისმგებლობა არსებულ ხაზი.

\(\alpha = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4) \)

არსებულ ხაზ. თავისმგებლობა გამოყვანილი ოქროვად.

(1) \(Y_0 \times Z_0 \subseteq \cup (T_i \times Z_i) \subseteq Y_0 \times Z_0 \);

(2) \(Y_0 \times Z_0 \subseteq \cup (T_i \times Z_i) \subseteq Y_k \times Z_k \) = \(\emptyset \) თავამოწმები შეუძლია რომ რამდენიმე
\(k \in \{1, 2, 3, 4\} \)-თვუთებ;

(3) \(Y_i \times Z_i \subseteq \cup (T_i \times Z_i) \subseteq Y_i \times Z_i \);

(4) \(Y_k \times Z_k \subseteq \cup (T_i \times Z_i) \subseteq Y_k \times Z_k \) = \(\emptyset \) თავამოწმები შეუძლია რომ რამდენიმე
\(k \in \{2, 3, 4\} \)-თვუთებ;

(5) \(Y_2 \times Z_2 \subseteq \cup (T_i \times Z_i) \subseteq Y_2 \times Z_2 \);

(6) \(Y_2 \times Z_2 \subseteq \cup (T_i \times Z_i) \subseteq Y_k \times Z_k \) = \(\emptyset \) თავამოწმები შეუძლია რომ რამდენიმე
\(k \in \{1, 3, 4\} \)-თვუთებ;

(7) \(Y_3 \times Z_3 \subseteq \cup (T_i \times Z_i) \subseteq Y_3 \times Z_3 \);

(8) \(Y_3 \times Z_3 \subseteq \cup (T_i \times Z_i) \subseteq Y_k \times Z_k \) = \(\emptyset \) თავამოწმები შეუძლია რომ რამდენიმე
\(k \in \{0, 1, 2, 4\} \)-თვუთებ;

(9) \(Y_4 \times Z_4 \subseteq \cup (T_i \times Z_i) \subseteq \cup (T_i \times Z_i) \subseteq Y_4 \times Z_4 \).

(1) და (2) ლადამსუფლის გამოყვანილი. თავი მოათხრობს
\(\emptyset \)-სახ. თავისმგებლობა თავისმგ. გამოყვანილი ხაზი.

(3) გამოყვანილი ხაზი გამოყვანილი ხაზი.

(4) გამოყვანილი ხაზი გამოყვანილი ხაზი.

(5) გამოყვანილი ხაზი გამოყვანილი ხაზი.

(6) გამოყვანილი ხაზი გამოყვანილი ხაზი.

(7) გამოყვანილი ხაზი გამოყვანილი ხაზი.

(8) გამოყვანილი ხაზი გამოყვანილი ხაზი.

(9) გამოყვანილი ხაზი გამოყვანილი ხაზი.

(10) გამოყვანილი ხაზი გამოყვანილი ხაზი.
კლასები არ იქნება Z_4, გარდაცვალა (3) დოლიალების გამოთვლისას, Y_i უნიკალურად D ხასიათებს მინიჭებულ კლასებურად.

(3) განხილვით გამოთვლისას, როდესაც $Y_i = \emptyset$, ან არ იქნებოდა უნიკალურად Z_i, მიუხედავად იქმნათ T_i მანძილები $Z_i \setminus Z_0$ ხასიათებებს და $Y_i \cap Z_i \neq \emptyset$. გარდაცვალი აქვთ Z_i ხასიათები. იქმნათ T_i ხასიათ არ იქნება Z_0 ხასიათებებმა, ამიტომ $Z_i \neq Z_n$.

(4) განხილვით გამოთვლისას, როდესაც Z_i ხასიათება არ იქნებოდა Y_2, Y_3 და Y_4, ამიტომ Z_0 ხასიათები აქვთ $Y_0 \cup Y_1$. აქვთ უერთდებიან Z_i ხასიათებებში გამოთვლისას ხოლო $Y_0 \cup Y_1$. უერთდებიან Z_i ხასიათებში გამოთვლისას აქვთ D ხასიათები რომლებიც Z_k ღიახურებიან.

ანულად, ამიტომ, როდესაც $Y_0 \cup Y_1 \supseteq Z_k$ და $Y_0 \subseteq Z_n$, ამიტომ $Z_n \neq Z_k$.

ამჯერად $(Y_0 \cup Y_1) \subseteq Z_k \cup Z_n$, ამიტომ $Y_0 \cup Y_1 \supseteq Z_k \cup Z_n$, ამიტომ $Y_0 \cup Y_1 \supseteq Z_4$, რადგანაც (5) განხილვა გამოთვლისას როდესაც $Y_2 \cap Z_4 \neq \emptyset$.

ამიტომ, როდესაც $Y_0 \cup Y_1$ იქნათ D ხასიათები, აქვთ ხოლო Z_0 და Z_4 ღიახურები, რომლები Z_2 ღიახურება, რომლები ქმნიათ ხასიათი გამოთვლისას, იქმნება ღიახურები, რომლები Z_4-ის ღიახურება, ამჯერად (4) გამოთვლის გამოთვლით ამ ღიახურებები Z_i ღიახურება, ამიტომ იქმნათ T_i ხასიათები Z_i ხასიათები, ამიტომ Y_i ხასიათები Z_k ღიახურება, იქმნათ D ხასიათები Z_n ღიახურება.
(6) თანამედროვე გარემოსასწავლების, რომ სივრცე უფრო აშენებს ახლა ახლა ზოგ მონაკვეთი Z_n საფუძვლით Z_m სპეციალურად და სწავლობდნენ ახლა ახლა Z_n-ში. ამან გადაწყვეტილება აღწერილია ზოგ მონაკვეთი Z_m-ზე.

აღნიშნულ მოთხოვნა, რომ

$Y_0 \cup Y_2 \supseteq Z_m$, $Z_m \neq Z_n$, $Z_m \neq Z_k$, $(Y_0 \cup Y_2) \cup Y_0 \supseteq Z_m \cup Z_n$,

შეიძლება $Y_0 \cup Y_2 \supseteq Z_m \cup Z_n$. განსხვავებით $Y_0 \cup Y_2 \supseteq Z_4$, აღმასრულებს Z_m, $Z_n \in \{Z_0, Z_1\}$ ან $Z_m \cup Z_n \in \{Z_0, Z_1\}$. მაგრამ დაახლოებმა ყოფილ, რომ

Z_n, $Z_k \in \{Z_0, Z_1\}$ ან Z_n, $Z_k \in \{Z_0, Z_2\}$.

თუ გაგრძელებისთვის ზოგ მოთხოვნა არის, მაგრამ ამჯერთად, რომ $Z_n = Z_0$.

საზოგადოდ გადაწყვეტილება:

$Y_0 \supseteq Z_0$, $Y_0 \cup Y_1 \supseteq Z_1$, $Y_0 \cup Y_2 \supseteq Z_2$ ან $Y_0 \supseteq Z_0$, $Y_0 \cup Y_1 \supseteq Z_2$, $Y_0 \cup Y_2 \supseteq Z_1$.

განსხვავებით $(Y_0 \cup Y_1) \setminus (Y_0 \cup Y_2) = Y_0$ აღმასრულებს $Y_0 \supseteq Z_1 \cap Z_2$.

(7) კომპონენტი გაგრძელებად, რომ გაცხადებს ახლა ზოგ მონაკვეთი Z_i შეღწევად, მიეკუთვნება კომპონენტად არაახლა კი გაცხადებს Z_3 შეღწევად.

(8) გადაწყვეტილება მოთხოვნა, რომ ახლა ზოგ მონაკვეთი Z_3-ის რეჟიმთან არ შეუერთ Y_0, Y_1, Y_2 და Y_4. მაქსიმალურად, თუ შეუერთს Y_3 ამორჩებს ახლა ზოგ მონაკვეთი Z_i-ს ახლა ახლა Z_p გადაწყვეტილებად, შემდე. $Y_3 \supseteq Z_p$.

ამისათვის, (7) და (8) გადაწყვეტილება ელიტურად, რომ

$Y_3 = \emptyset$ ან $Y_3 \supseteq Z_p$.

თუმცა $Y_3 \neq \emptyset$, ამისათვის გადაწყვეტილება $Y_3 \supseteq Z_p$ და $Y_0 \cup Y_1 \supseteq Z$, ანუ $Z \in \{Z_1, Z_2\}$ დაახლოებით

$Y_3 \cap (Y_0 \cup Y_1) \supseteq Z_0 \cap Z$ ან $Z_0 \cap Z = \emptyset$.

D საშუალოსნარეების ქვეყნის გადაწყვეტილება ზოგ Z საშუალოსნარეების არც არც გადაწყვეტილება არ შეერთ გარემოსასწავლების ქვეყნა, ას კი შეუდგენილად. ამისათვის, თუმცა $Y_i \neq \emptyset$ შეუერთ, $Y_i = \emptyset$.

ამისათვის, ზოგ გადაწყვეტილება გადაწყვეტილება რომ, რომ $Y_3 \neq \emptyset$, შეუერთ $Y_2 = \emptyset$.

59
თეორემა 4.1. გარეშე $D = \{Z_0, Z_1, Z_2, Z_3, Z_4\} \in \Sigma_1(X, 5)$. $B_x(D)$ ნებუდოვანია ა ჯგუფები სხვაობას ან ნებუდოვანობა ნახავა და გამოყენება, რომელიც აკეთებს გამოყოფილ ართხევლების შეთვალყურების ერთერთი,

а) $a = X \times Z$, ხოლო Z არის D ნახავის თარიღვანი ჯგუფები;

б) $a = (Y \times Z) \cup (Y' \times Z')$, ხოლო Z და Z' არის D ნახავის ართხევლები ჯგუფები, რომ $Z \subset Z'$, ხოლო Y და Y' ჯგუფები X ნახავის ართხევლები ჯგუფები, თარიღვანთა აღწერა აქვს

\[
\begin{align*}
& \{Y \supseteq Z_0, \quad Y \not\supseteq Z_4, \\
& \{Y \supseteq Z_3, \\ & Y \not\supseteq Z_4
\end{align*}
\]

(1)

\[
\begin{align*}
& \{Y \supseteq Z_3, \\ & Y \not\supseteq Z_4
\end{align*}
\]

(2)

კანონითა გამოყენებით;

в) $a = (Y_0 \times Z_0) \cup (Y \times Z) \cup (Y_4 \times Z_4)$, ხოლო $Z \in \{Z_1, Z_2\}$, ხოლო Y_0, Y და Y_4 ჯგუფები X ნახავის ართხევლები ჯგუფები, თარიღვანთა აღწერა აქვს

\[
\begin{align*}
& Y_0 \supseteq Z_0, \quad Y_0 \cup Y \supseteq Z_1, \quad Y_0 \not\supseteq Z_1, \quad Y_0 \cup Y \not\supseteq Z_4 \quad (1) \\
& \{Y_0 \supseteq Z_0, \quad Y_0 \cup Y \supseteq Z_1, \quad Y_0 \not\supseteq Z_1, \quad Y_0 \cup Y \not\supseteq Z_4, \quad Y_0 \cup Y_4 \not\supseteq Z_4 \quad (2) \\

\text{ჯამჯღურით;}

\begin{align*}
& Y_0 \supseteq Z_0, \quad Y_0 \cup Y \supseteq Z_1, \quad Y_0 \not\supseteq Z_1, \quad Y_0 \cup Y \not\supseteq Z_4 \\
& \{Y_0 \supseteq Z_0, \quad Y_0 \cup Y \supseteq Z_1, \quad Y_0 \not\supseteq Z_1, \quad Y_0 \cup Y \not\supseteq Z_4, \quad Y_0 \cup Y_4 \not\supseteq Z_4 \\

\text{ჯამჯღურით;}

\begin{align*}
& Y_0 \supseteq Z_0 \cap Z_2, \quad Y_0 \not\supseteq Z_1, \quad Y_0 \not\supseteq Z_2, \quad Y_0 \cup Y_1 \not\supseteq Z_1, \\
& Y_0 \cup Y_2 \supseteq Z_2, \quad Y_0 \cup Y_1 \not\supseteq Z_4, \quad Y_0 \cup Y_2 \not\supseteq Z_4 \\
& \{Y_0 \cup Y_2 \supseteq Z_2, \quad Y_0 \cup Y_1 \not\supseteq Z_4, \quad Y_0 \cup Y_2 \not\supseteq Z_4 \quad (2)
\end{align*}
\]

(1)

(2)

ჯამჯღურით;
e) \(a = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_4 \times Z_4) \) ხოლო მაგ. \(Y_0, Y_1, Y_2 \) და \(Y_4 \)

\[
\begin{align*}
Y_0 & \ni Z_1 \cap Z_2, \quad Y_0 \ni Z_1, \quad Y_0 \ni Z_2, \quad Y_0 \cup Y_1 \ni Z_1, \quad Y_0 \cup Y_2 \ni Z_2, \\
Y_0 \cup Y_1 & \ni Z_4, \quad Y_0 \cup Y_2 \ni Z_4, \quad Y_0 \cup Y_1 \cup Y_2 \neq X
\end{align*}
\] (1)

\[
\begin{align*}
Y_0 & \ni Z_1 \cap Z_2, \quad Y_0 \ni Z_1, \quad Y_0 \ni Z_2, \quad Y_0 \cup Y_1 \ni Z_2, \quad Y_0 \cup Y_2 \ni Z_1, \\
Y_0 \cup Y_1 & \ni Z_4, \quad Y_0 \cup Y_2 \ni Z_4, \quad Y_0 \cup Y_1 \cup Y_2 \neq X
\end{align*}
\] (2)

f) \(a = (Y_0 \times Z_0) \cup (Y_3 \times Z_3) \), ხოლო \(Z_0 \cap Z_3 = \emptyset \), ხოლო მაგ. \(Y_0, Y_3 \)

\[
\begin{align*}
Y_0 & \ni Z_0 \quad \text{და} \quad Y_0 \cap Z_3 = \emptyset
\end{align*}
\] (1)

\[
\begin{align*}
Y_0 & \ni Z_3 \quad \text{და} \quad Y_0 \cap Z_0 = \emptyset
\end{align*}
\] (2)

g) \(a = (Y_0 \times Z_0) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4) \), ხოლო \(Z_0 \cap Z_3 = \emptyset \) და \(Y_0, Y_3 \)

\[
\begin{align*}
Y_0 & \ni Z_0, \quad Y_3 \ni Z_3, \quad Y_0 \cup Y_3 \neq X
\end{align*}
\] (1)

\[
\begin{align*}
Y_0 & \ni Z_3, \quad Y_3 \ni Z_0, \quad Y_0 \cup Y_3 \neq X
\end{align*}
\] (2)

ლადირგინები. პირველი \(a \)-ს ხორცის ფუნდამენტს ჰქონდა სხვა: \(a = X \times Z \),

\[
\begin{align*}
\text{ხოლო} \quad Z \text{ ძალა} D \text{ ხასიათმეტის თაობად} \text{ გამჭვირვალება.} \quad \text{ა} \text{ მცხოვრებია თაობა} 2.1-ის \quad a) \text{ პირველი} \text{ თეორემა} \text{ a} \text{ ძალა} \text{ B}_x (D) \text{ ხასიათმეტის}
\end{align*}
\]

\[
\begin{align*}
\text{ამ\dots} \text{ ლადირგინები} \text{ a} \text{ გამჭვირვალების ხორცის ფუნდამენტიმდე \text{ ბრძოლთა} D \text{ ხასიათმეტის} \text{ თაობა} \text{ გამჭვირვალება.} \text{ ქსალი, ლადირგინები a} \text{ გამჭ\dots} \text{ და Z, Z'} \text{ ხასიათმეტის სქემით ბრძოლა} \text{ ხოლო} \text{ თაობის} \text{ მქონე\dots} \text{ ხოლო 61}
\end{align*}
\]
4.1-ისთვის თანამედროვე იყო განთავსებული, როგორც თანამედროვე აღმოსავლეთის სახელწოდება.

\[\{Y \supseteq Z_0 \text{ ან } Y' \supseteq Z_3\} \]

4.2-ისთვის თანამედროვე იყო განთავსებული, როგორც თანამედროვე აღმოსავლეთის სახელწოდება.

\[\{Y \supseteq Z_0 \text{ ან } Y' \supseteq Z_3\} \]

4.3-ისთვის თანამედროვე იყო განთავსებული, როგორც თანამედროვე აღმოსავლეთის სახელწოდება.

\[\{Y \supseteq Z_0 \text{ ან } Y' \supseteq Z_3\} \]

4.4-ისთვის თანამედროვე იყო განთავსებული, როგორც თანამედროვე აღმოსავლეთის სახელწოდება.

\[\{Y \supseteq Z_0 \text{ ან } Y' \supseteq Z_3\} \]
ლუდა 4.3-ის თანახმად, სტიმ წყვილიური ლეგენდრების ლიზესაყოფ ტქვენირებათ თუ თანხაზნებამ Ζ₂, სრულ არ თანხაზნებამ Ζ₁ და Ζ₂.
 ქვემოთ არი გამოყენებაგები, ამით ქმნას შედეგები შემდგომით:
1) \(\alpha = (Y₀ \times Z₀) \cup (Y₁ \times Z₁) \cup (Y₂ \times Z₂). \)
 ჭერით ა არის \(B₅(D) \) ნახევრადგენი რეგულარული ლეგენდრა, სრულ არი თანხაზნება \(B₅(D) \) ნახევრადგენი ამით ლეგენდრი ქო = \(\cup (T₁ \times Z₁) \) რომ ქ = ą = ą.
 მა ვუ ნახევარი, რომ ნილულიგი შედეგი გადააქტივება:
1) \((Y₀ \times Z₀) \cup (T₁ \times Z₁) \cup (Y₀ \times Z₀) = Y₀ \times Z₀; \)
2) \((Y₀ \times Z₀) \cup (T₁ \times Z₁) \cup (Y₀ \times Z₀) = \emptyset, \) ბიძა \(k = 1,2; \)
3) \((Y₁ \times Z₁) \cup (T₁ \times Z₁) \cup (Y₁ \times Z₁) = Y₁ \times Z₁; \)
4) \((Y₁ \times Z₁) \cup (T₁ \times Z₁) \cup (Y₂ \times Z₂) = \emptyset; \)
5) \((Y₂ \times Z₂) \cup (T₁ \times Z₁) \cup (Y₂ \times Z₂) = Y₂ \times Z₂; \)
6) \((Y₂ \times Z₂) \cup (T₁ \times Z₁) \cup (Y₁ \times Z₁) = \emptyset. \)

1) და 2) გამოყენებისას გამოთხნევანი ბიუჯეტი, რომ მოაცემს წყვილ ინტეგრალი თანხაზნები ქრიდგალთა ქრიდგალთა ქ-ნ \(Tₙ \) ნახევრადგენ არქად ქ-ნ \(Zₙ \) ნახევრადგენ.

3) გამოყენების გამოთხნევანი ბიუჯეტი, რომ არქად თანხაზნები ქ-ომ ქ-ნ \(Tₙ \), ქრიდგით \(Tₙ \cap Z₀ = \emptyset, Tₙ \cap (Z₁ \setminus Z₀) \neq \emptyset \) და თანხაზნები ქ-ომ ნახევრადგენ ქ-ნ \(Zₙ \) ნახევრადგენმა ქ-ნ \(Y₁ \cap Zₙ \neq \emptyset. \)

4) გამოყენების სოლარი, რომ ქ-ნ \(Zₙ \cap Y₂ = \emptyset \) და ქ-ზ \(Y₀ \cup Y₁ \supseteq Zₙ. \) შეიძლება, რომ ქ-ზ \(Zₙ \neq Zₙ. \) ამ. ქ-ი \(Y₀ \supseteq Z₀ \) და \(Y₀ \cup Y₁ \supseteq Zₙ \) ქ-ი \(Y₀ \) და \(Y₀ \cup Y₁ \) დარბაზები \(D \) ნახევრი გამოთხნევა ლეგენდნები. სოლარით გამოყენება \(Y₀ \cup (Y₀ \cup Y₁) \supseteq Zₙ \cup Zₙ = Zₙ. \)

5) გამოყენების გამოთხნევანი ბიუჯეტი, რომ ქ-ზ \(Y₂ \) მარჯვნიჭენი \(D \) ნახევრი გამოთხნევა ლეგენდნები, ამ. ქ-ზ \(Y₂ \cap Zₙ \neq \emptyset, \) დარბაზ ქ-ი \(Y₀ \cup Y₁ \supsetneq Z₄, \) და ქ-ზ \(Zₙ \neq Zₙ. \)
D ხაზგანეტიკურის თვითიერთი ამ ხაზგანეტიკის აღვითარება ქვეპრობა, რომლისათვის გაცნობას აქვთ Z₄,
ან ანგრიფა (Z₀, Z₁) ან (Z₀, Z₂) ნახევრად ადგილობს გამოტანილი ქანი Z₀, Z₁, Z₀ ან Z₂
Y₀ ⊇ Z₀, Y₀ ⊈ Z₁, Y₀ ∪ Y₁ ⊇ Z₁, Y₀ ∪ Y₁ ⊈ Z₂,
ან
Y₀ ⊇ Z₀, Y₀ ⊈ Z₁, Y₀ ∪ Y₁ ⊇ Z₂, Y₀ ∪ Y₂ ⊈ Z₄
დამოუკიდებლობა.
(5) გამოთევის ოთხმეორებადების, რომ არ გაიმართა არეთა Tₖ, რომლისგან
მოუთხოვა Tₖ ∩ Z₀ = ∅, Tₖ ∩ (Z₂ \ Z₀) ≠ ∅ და Tₖ სახრივგან ემსხვერპლი Zₖ
სახელობმათით Y₂ ∩ Zₖ ≠ ∅, ამისთვის Zₖ ≠ Zₐ და Zₖ ≠ Zₙ.
(6) გაგრძელის გადა გამოცხადება: Y₀ ∪ Y₂ ⊇ Zₖ. მოცემული, რომ
\(\{(Y₀ ∪ Y₁) ⊇ Z₁, (Y₀ ∪ Y₂) ⊇ Z₂.\)

სახელმწიფო
(Y₀ ∪ Y₁) ∩ (Y₀ ∪ Y₂) ⊇ Z₁ ∩ Z₂ ან Y₀ ⊇ Z₁ ∩ Z₂.

მოყვანადან, ბოლომდე, რომ თუ
\(a = (Y₀ × Z₀) ∪ (Y₁ × Z₁) ∪ (Y₂ × Z₂),\)
ლექსმუნ ორის Bₜ(D) ხაზგანეტიკის ქვეპრობამ გამოტანილი, მაშინ Y₀, Y₁
და Y₂ წინაშე X ხაზგანეტის აღვითარების, რომ ადგილობი გვქნებთ
Y₀ ⊇ Z₁ ∩ Z₂, Y₀ ⊈ Z₁, Y₀ ⊈ Z₂, Y₀ ∪ Y₁ ⊇ Z₂,
Y₀ ∪ Y₂ ⊇ Z₁, Y₀ ∪ Y₁ ⊈ Z₄, Y₀ ∪ Y₂ ⊈ Z₄,
ან
Y₀ ⊇ Z₁ ∩ Z₂, Y₀ ⊈ Z₁, Y₀ ⊈ Z₂, Y₀ ∪ Y₁ ⊇ Z₁,
Y₀ ∪ Y₂ ⊇ Z₂, Y₀ ∪ Y₁ ⊈ Z₄, Y₀ ∪ Y₂ ⊈ Z₄
დამოუკიდენი ქმები, ქართული. აქ ა ქვეპრობათ თანხმობათ d) პირობებზე.
ახლა გამოდით პირობებზ.
გარემო ბოლომდე Y₀, Y₁, Y₂ ქმედება ქანეფახვალ ამოყვანილი გამოქვლებას, ქმედობათ ადგილობ გვქნებთ
Y₀ ⊇ Z₁ ∩ Z₂, Y₀ ⊈ Z₁, Y₀ ⊈ Z₂, Y₀ ∪ Y₁ ⊇ Z₂,
Y₀ ∪ Y₂ ⊇ Z₁, Y₀ ∪ Y₁ ⊈ Z₄, Y₀ ∪ Y₂ ⊈ Z₄

64
ლათინური ფორმულების გამოყენებით, ჩვენ ნიშნავთ, რომ \(\alpha = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \) ხახარგული მისაღებია, რომ მეორე რაქმით აგება B_x(D) გამოყოფს კომპონენტური ყოფნები.

გაქვთ,

\[\beta = ((Z_1 \cap Z_2) \times Z_0) \cup ((Z_1 \setminus Z_2) \times Z_1) \cup ((Z_1 \setminus Z_2) \times Z_2) \cup ((X \setminus Z_1) \times Z_2). \]

ამგვან ქსასთავის ფორმულაში, იმდენ არსებულია (1)-(6) ფორმულები, შეიძლება

\[(Y_0 \times Z_0) \circ [(Z_1 \cap Z_2) \times Z_0] \cup ((Z_1 \setminus Z_2) \times Z_1) \cup ((Z_1 \setminus Z_2) \times Z_2) \cup ((X \setminus Z_1) \times Z_2) \circ (Y_0 \times Z_0) = (Y_0 \times Z_0) \circ (Y_0 \times Z_0) = Y_0 \times Z_0, \]

\[(Y_0 \times Z_0) \circ [(Z_1 \cap Z_2) \times Z_0] \cup ((Z_1 \setminus Z_2) \times Z_1) \cup ((Z_1 \setminus Z_2) \times Z_2) \cup ((X \setminus Z_1) \times Z_2) \circ (Y_0 \times Z_0) = (Y_0 \times Z_0) \circ (Y_0 \times Z_0) = \emptyset, \]

სადაც \(k \in \{1, 2\}. \)

\[(Y_1 \times Z_1) \circ [(Z_1 \cap Z_2) \times Z_0] \cup ((Z_1 \setminus Z_2) \times Z_1) \cup ((Z_1 \setminus Z_2) \times Z_2) \cup ((X \setminus Z_1) \times Z_2) \circ (Y_1 \times Z_1) = (Y_1 \times Z_0) \cup (Y_1 \times Z_2) \]

\[(Y_2 \times Z_2) = (Y_1 \times Z_1) \cup (Y_2 \times Z_2) = \emptyset, \]

\[(Y_2 \times Z_2) \circ [(Z_1 \cap Z_2) \times Z_0] \cup ((Z_1 \setminus Z_2) \times Z_1) \cup ((Z_1 \setminus Z_2) \times Z_2) \cup ((X \setminus Z_1) \times Z_2) \circ (Y_2 \times Z_2) = (Y_2 \times Z_0) \cup (Y_2 \times Z_2) = Y_2 \times Z_2, \]

\[(Y_2 \times Z_2) \circ [(Z_1 \cap Z_2) \times Z_0] \cup ((Z_1 \setminus Z_2) \times Z_1) \cup ((Z_1 \setminus Z_2) \times Z_2) \cup ((X \setminus Z_1) \times Z_2) \circ (Y_2 \times Z_2) = \emptyset. \]

როგორც ჩვენ ლამჭვარჟობი (1)-(6) ფორმულები იმეორებს \(\alpha \circ \beta = \alpha \) სახ. \(\alpha \) რელაქსირებული ყოფნა.

ჩვენ ა დავალაქტოთ, რომ X ხახარგულთა Y_0, Y_1, Y_2 დახმარებით არსებულია სადამთავრებული პარამეტრი;

\[Y_0 \supseteq Z_0, \ Y_0 \nsubseteq Z_1, \ Y_0 \nsubseteq Z_2, \ Y_0 \cup Y_1 \nsubseteq Z_1, \ Y_0 \cup Y_2 \nsubseteq Z_2, \ Y_0 \cup Y_1 \nsubseteq Z_4, \ Y_0 \cup Y_2 \nsubseteq Z_4, \]

მაშინ ა არჩებთ ყოფნის ყოფნა ყოფნა, და მიხარავდებოდ, რელაქსირებული ყოფნა.

ამისათვის, თუ a ა დახმარების თავგარეშე d) პარამეტრი, მაშინ ა რელაქსირებული ყოფნა.

2) \(\alpha = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \)

ჯერ არჩებთ a არჩევით B_x(D) ბაზასთავის რელაქსირებული ყოფნა, მაშინ ძირად მართულ B_x(D)-h ყოფილი ყოფნა \(\beta = \cup (T_i, x), \) რომ \(\alpha \circ \beta = \alpha. \) ეს ჯერ ნიშნავს, თუმცა შეუძლებელია შეყვანა ყოფნებში:

65
1. \((Y_0 \times Z_0) \circ (\cup(T \times Z)) \circ (Y_0 \times Z_0) = Y_0 \times Z_0;\)
2. \((Y_0 \times Z_0) \circ (\cup(T \times Z)) \circ (Y_0 \times Z_2) = \emptyset, \text{ საიდან ითვალით } k = 1, 4;\)
3. \((Y_0 \times Z_1) \circ (\cup(T \times Z)) \circ (Y_1 \times Z_1) = Y_1 \times Z_1;\)
4. \((Y_0 \times Z_1) \circ (\cup(T \times Z)) \circ (Y_1 \times Z_4) = \emptyset;\)
5. \((Y_0 \times Z_1) \circ (\cup(T \times Z)) \circ (Y_1 \times Z_4) = Y_0 \times Z_4.\)

1) და 2) გეგმარებულია არსებობისას, იმით რომ მაგალითი D ხასიათით ტანჯლობა Zn ქვემოდგმები.

3) და 4) გეგმარებულია ამოღებით, იმით რომ მაგალითი Zn ხასიათით მოკვეთილია Zm ხასიათით იმით რომ Y_0 \cup Y_1 თარგმია ამ Zm ხასიათით.

\[Y_0 \supseteq Z_n \text{ და } Y_0 \cup Y_1 \supseteq Z_m \text{ ისე, \ } Y_0 \cup (Y_0 \cup Y_1) \supseteq Z_n \cup Z_m = Z_p \text{ და } Y_0 \cup Y_1 \supseteq Z_p,\]

5) დაკავშირებით გეგმარებულია, იმით რომ Y_4 თარგმია არსებობა D ხასიათით კონტუნული ქვემოდგმები, ამიტომ ყოველთვის Y_0 \cup Y_1 \supseteq Z_4.

იმისთვის, თუ მაგალითი D ხასიათით არის უფრო ქულა Z_4 ხასიათით, იშვიათია არ გამოდგა Z_4 ხასიათით. ამით ნევროგნეა სულავი D ხასიათით არის ქული Z_0, Z_1 ან Z_2, Z_4. ხასიათილები შედგინებით დასრულია მაგალითი Yi, Yi, Yi ბატონიზება X ხასიათით არის ქული გამოდგა, იმისთვის ამოღებით მეტად შექმნილი ზოგი

\[Y_0 \supseteq Z_0, \ Y_0 \not\supseteq Z_1, \ Y_0 \cup Y_1 \supseteq Z_1, \ Y_0 \cup Y_1 \not\supseteq Z_4 \]

აქ

\[Y_0 \supseteq Z_0, \ Y_0 \not\supseteq Z_2, \ Y_0 \cup Y_1 \supseteq Z_2, \ Y_0 \cup Y_1 \not\supseteq Z_4 \]

ლაპარაკობებით, გ.ა. ა გამოიყენოთ სტილიზაცია და) პროპოზია.

ამით გამოიყენება მთავართან. გამოიყენება Y_0, Y_1, Y_4 ბატონიზება X ხასიათით არის ქულა. მაგალითით ქულა გამოდგა, იმისთვის ამოღებით მეტად შექმნილი ზოგი

\[Y_0 \supseteq Z_0, \ Y_0 \not\supseteq Z_2, \ Y_0 \cup Y_1 \supseteq Z_2, \ Y_0 \cup Y_1 \not\supseteq Z_4 \]

ნაპოვნი გამოთქვა. 66
\[\beta = (Z_6 \times Z_0) \cup ((Z_2 \times Z_0) \times Z_1) \cup ((X \times Z_2) \times Z_4) \]

აღნისრით გამოვლინებელია, რომ სახელმწიფო (I)-(5) გამოფარვით, როდე
ჩამორჩა მოთხ, რომ \(\alpha = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_4 \times Z_4) \) რომ B_4(D) ბხანანიარების
კოორდინატები გაზარდინია.

რაც ა იყოს, რომ X ხანგრძლივი Y_0, Y_1, Y_4 ებუპირსკვნალებად
ნახვითხელი ტაგვილობებს პირობებს:

\[Y_0 \supseteq Z_0, \; Y_0 \nsubseteq Z_1, \; Y_0 \cup Y_1 \supseteq Z_1, \; Y_0 \cup Y_1 \nsubseteq Z_4 \]

მაშინ a არის ლოგიკისთვის ყველაზე ძირითად და პირობებს მიმდინარეობს.

აღმოსავლეთი სიმბოლებით

\[a = (Y_0 \times Z_0) \cup (Y_2 \times Z_2) \cup (Y_4 \times Z_4) \]

გაზარდინილი ქვემორაბილობა.

მაშინაც, თუ a ტაგვილობიში ტაგვილობა c) პირობებს, მაშინ აქ
არის ლოგიკისთვის ყველაზე ძირითად.

3) \(a = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_4 \times Z_4) \).

ვინაიდან, a არის B_X(D) ბხანანიარების მტკიცესებული ყალიბები, მაშინაც არქემები B_X(D) ბხანანიარების არქე ყალიბები \(\beta = \cup (T_i \times Z_i) \), რომ
\(a \circ a = a \). ეს ჩამორჩა, რომ ტაგვილობა ტაგვილით გამომდინარეობა:

1) \((Y_0 \times Z_0) \circ ((Y_1 \times Z_1)) \circ (Y_4 \times Z_4) = Y_0 \times Z_0 \);
2) \((Y_0 \times Z_0) \circ ((Y_1 \times Z_1)) \circ (Y_4 \times Z_4) = \emptyset \), სადაც \(k \in \{3; 4\} \);
3) \((Y_2 \times Z_2) \circ ((Y_1 \times Z_1)) \circ (Y_4 \times Z_4) = Y_3 \times Z_3 \);
4) \((Y_2 \times Z_2) \circ ((Y_1 \times Z_1)) \circ (Y_4 \times Z_4) = \emptyset \), სადაც \(k \in \{0; 4\} \);
5) \((Y_4 \times Z_4) \circ ((Y_1 \times Z_1)) \circ ((Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_4 \times Z_4)) = Y_4 \times Z_4 \).

1) და 2) გასათვლელია გამოთქვამებით, რომ Y_0 მთლიანი D
ბხანანიარების რიგი ყველაზე Z_n ყალიბები.

3) და 4) გასათვლელია გამოთქვამებით, რომ Y_3 მთლიანი D
ბხანანიარების რიგი ყველაზე Z_k ყალიბები, მაშინაც \(Z_k \neq Z_n \).

67
მივითარავთ $Y_0 \subseteq Z_n$, $Y_3 \subseteq Z_k$, ხოლო $Y_0 \cap Y_3 \subseteq Z_n \cap Z_k$ წ.ა. $Z_n \cap Z_k = \emptyset$. D ხარჯისტლებიდან ამო კლასიფიქაცია ქმნიათ ამავე Z_0 და Z_3. წ.ა. თუ ა არის მინიმალური კლასიფიკაცია, ხოლო $Z_0 \cap Z_3 = \emptyset$ და Y_0, Y_3 და Y_4 შექმნები X არის ისე, რომ \cap გვხვდება, რომელიათაგან ხარჯავთ ტერმინები:

$$
\begin{align*}
Y_0 \subseteq Z_0 \\
Y_3 \subseteq Z_3 \\
Y_4 \subseteq Z_0
\end{align*}
$$

ღონეთისაგან. ამ შექმნება $Y_0 \cup Y_3 \subseteq Z_0 \cup Z_3 = Z_4$ ამჯდება ამ პრობლემათა (5) გალათობა ყოვლისგან შექმნილა.

ამიტომ, მივითარავთ, თუ მივნარებულ პირობით ა მინიმალური კლასიფიკაცია ხარჯისტლებიდან თეორემის გ) პარამეტრები.

ამით გამოიწვევთ პირობა. თუქმეტ, $Z_0 \cap Z_3 = \emptyset$ და Y_0, Y_3, Y_4 შექმნები X არის ისე, რომ \cap გვხვდება, ხოლო $Y_0 \subseteq Z_3$ და $Y_3 \subseteq Z_0$. თუქმეტ:

$$
\beta = (Z_3 \times Z_3) \cup (Z_0 \times Z_3) \cup ((X \setminus Z_4) \times Z_4).
$$

ღონისძიება შემდგომმა, რომ ნიშანებს (1)-(5) გათვალისწინებულ და ამჯდება $a \otimes b = a$, წ.ა. ა არის $B_x(D)$ ხარჯისტლების მინიმალური კლასიფიკაცია.

ამიტომ თუ სიქრულება თეორემის გ) პარამეტრულ ბიუჯეტის $B_x(D)$ ხარჯისტლების მინიმალური კლასიფიკაცია.

4) $a = (Y_4 \times Z_3) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4)$.

ღონისძიება, ა არის $B_x(D)$ ხარჯისტლების მინიმალური კლასიფიკაცია, მაგრამ ხშირად არ გვხვდება ხარჯავადი ტერმინები: $\beta = \cup (T_i \times Z_i)$, რომ შექმნილა მინიმალური ტერმინები:

1) $(Y_i \times Z_i) \circ (\cup (T_i \times Z_i)) \circ (Y_i \times Z_i) = Y_i \times Z_i$;

2) $(Y_i \times Z_i) \circ (\cup (T_i \times Z_i)) \circ (Y_k \times Z_k) = \emptyset$, სადაც $k \in \{2; 4\}$;

3) $(Y_2 \times Z_2) \circ (\cup (T_i \times Z_i)) \circ (Y_i \times Z_i) = Y_2 \times Z_2$;

4) $(Y_2 \times Z_2) \circ (\cup (T_i \times Z_i)) \circ (Y_k \times Z_k) = \emptyset$, სადაც $k \in \{1; 4\}$;

68
(5) \((Y_i \times Z_4) \subseteq (Y \times Z_2) \subseteq (Y_i \times Z_1) \subseteq (Y_i \times Z_4) = Y_i \times Z_4\).

(1) და (2) თვალყოფილია პირობით, რომ ეს \(Y_i\) თავის \(D\)-
ნახევარქვეს მოქმედია და \(Z_n\) კუთხები.

(3) და (4) თვალყოფილია გათვალისწინებით, რომ ეს \(Y_2\) თავის \(D\)
ნახევარქვეს მოქმედია და \(Z_m\) კუთხები, რომლიც გათვალისწინებულია \(Z_n\)

პირობით: \(Y_1 \supseteq Z_n, Y_2 \supseteq Z_m, Y_1 \cap Y_2 = Z_n \cap Z_m\) ან \(Z_n \cap Z_m = \emptyset\). ამიტომ
კუთხები და \(D\) ნახევარქვეს მოქმედია უთუ დებათ \(Z_0\) და \(Z_1\). ამიტომ ადგილი ექნება პაირები:

\[
\begin{cases}
Y_1 \supseteq Z_0, \\
Y_2 \supseteq Z_1
\end{cases}
\quad \text{ან} \quad
\begin{cases}
Y_1 \supseteq Z_3, \\
Y_2 \supseteq Z_0
\end{cases}
\]

თუ \(Y_1 \supseteq Z_0\), შეიძლება მოქმედიყო რით (4) თვალყოფი, რომლით \(T_1\) შეიძლო
პაირით \(Z_2\)-ის. თუ \(Y_2 \supseteq Z_2\).

თუ \(Y_2 \supseteq Z_2\), შეიძლება მოქმედიყო რით (2) თვალყოფი, რომლით
\(T_1\) შეიძლო პაირით \(Z_1\)-ის. თუ \(T_1 \supseteq Z_0\).

ამ გათვალისწინებათ პირობით

\(T_3 \cap T_0 \supseteq Z_2 \cap Z_1\) ან \(Z_2 \cap Z_1 = \emptyset\).

მაგრამ ეს მიიჩნევათ რომ და \(D\) ნახევარქვეს თავისჯერ თანამჟღა, როგორც
\(Z_2 \cap Z_1 = P_1 \cup P_2 \cup P_3 \neq \emptyset\).

ეს ჯამ ჩანს, თუმცა \(Y\) თავის \(D\)-
ნახევარქვეს მოქმედია ერთ ჯგუფში.

ლუჯა 4.3-ის თანახმად შეიძლო შედგენა, თუმცა ნახევარქვეს მოქმედია, რომლით \(\text{უთხრათ}\) \(D\) სტრუქტურაში ციკლი კუთხები, ან\(\epsilon\) კუთხე.

ამჯერ შეიძლო თანახება, თუმცა ნახევარქვეს კუთხები, რომლის
თანახმად \(\text{უთხრათ}\) \(D\) სტრუქტურაში ციკლი კუთხე, გამორგონით

\[a = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_3 \times Z_4)\].

69
ლამაზად, რომ $\mathcal{B}_X(D)$ ხაზებანგების რეჟიმების ობიექტა, რომელიც მართვის სივრცო ლამაზად $\beta=\cup(T_i \times Z_i)$, რომ სრულყოფილა შედგებოდა გამორჩევად:

1. $(Y_0 \times Z_0) \circ (Y_0 \times Z_0) = Y_0 \times Z_0$;
2. $(Y_0 \times Z_0) \circ (Y_k \times Z_k) = \emptyset$, სადაც $k \in \{1, 2, 4\}$;
3. $(Y_1 \times Z_1) \circ (Y_1 \times Z_1) = Y_1 \times Z_1$;
4. $(Y_k \times Z_k) \circ (Y_k \times Z_k) = \emptyset$, სადაც $k \in \{2, 4\}$;
5. $(Y_1 \times Z_1) \circ (Y_2 \times Z_2) = Y_2 \times Z_2$;
6. $(Y_1 \times Z_1) \circ (Y_4 \times Z_4) = \emptyset$, სადაც $k \in \{1, 4\}$;
7. $(Y_2 \times Z_2) \circ (Y_2 \times Z_2) = Y_4 \times Z_4$.

1. და 2. გამორჩევით გამოყვანილია, რომ Y_0 თანახა D ბაზისაგეგმების რიგში გამორჩევა Z₂ ლამაზად.

3. და 4. გამორჩევას მათ $Y_0 \cup Y_1$ თანახა D ბაზისაგეგმების, რიგში გამორჩევა Z₉ ლამაზად, ამისათვის $Z_1 \neq Z_2$. გამოირჩეა რომ $Y_0 \cup Y_1 \nsubseteq Z_{1} \cup Z_2$.

5. გამორჩევით ეს რიგში D ხაზებანგების ერთ ლამაზად შეერთება, ამისათვის $Y_0 \cup Y_2 \nsubseteq Z_2$. ქალაქ Z₉ და Z₂ ამი D ხაზებანგების ლამაზადად ახდო რიგში, რომლითაც გავრცელდა ახალი Z₄, ისეთი ზეღული შედგება შექმნა შექმნა Z₉, Z₁ ან Z₀, Z₂ ლამაზად.

ახალგაზრდა ზეთით აქსიომათელი შეტანება (5)-6. გამორჩევით გამოყენების თანახმად რიგში D ბაზისაგეგმების ახალ Z₉ ლამაზად, რომლითაც გამოყვანილია Z₉ და Z₂ ლამაზადად ან Z₉ \cup Z₂ \neq Z₄. ქალაქ Y₀ \cup Y₁ \nsubseteq Z₄ და Y₀ \cup Y₂ \nsubseteq Z₉ \cup Z₈. თუ გავრცელდა ზეთში, ამ ხაზებანგების თანახმად როგორც რიგში, რომ ამჯერად უნდა

\[
\begin{cases}
Y₀ \cup Y₁ \supseteq Z₁ \\
Y₀ \cup Y₂ \supseteq Z₂
\end{cases}
\quad \text{ან} \quad \begin{cases}
Y₀ \cup Y₁ \supseteq Z₂ \\
Y₀ \cup Y₂ \supseteq Z₁
\end{cases}
\]

ლამაზად გამოჩება. თუმცა შენახვება გამოჩენილი

\[(Y₀ \cup Y₁) \cap (Y₀ \cup Y₂) \supseteq Z₁ \cap Z₂ \quad \text{ან} \quad Y₀ \supseteq Z₁ \cap Z₂. \]
საბოლოო მითხარის, თუ როგორც უარყოფით მაგალითობა უარყოფით რელაციებში ლამპარელოვის შედეგები წინაპირობები:

\[Y_0 \supseteq Z_1 \land Z_2, \ Y_0 \nsubseteq Z_1, \ Y_0 \nsubseteq Z_2, \ Y_0 \cup Y_1 \supseteq Z_1, \ Y_0 \cup Y_2 \supseteq Z_2, \]
\[Y_0 \cup Y_1 \nsubseteq Z_4, \ Y_0 \cup Y_2 \nsubseteq Z_4, \ Y_0 \cup Y_1 \cup Y_2 \neq X, \]

ამით

\[Y_0 \supseteq Z_1 \land Z_2, \ Y_0 \nsubseteq Z_1, \ Y_0 \nsubseteq Z_2, \ Y_0 \cup Y_1 \supseteq Z_1, \ Y_0 \cup Y_2 \supseteq Z_1, \]
\[Y_0 \cup Y_1 \nsubseteq Z_4, \ Y_0 \cup Y_2 \nsubseteq Z_4, \ Y_0 \cup Y_1 \cup Y_2 \neq X, \]

გ. თუ ა = \((Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2) \cup (Y_4 \times Z_4)\) ნიშანი მუდმივარირებულ ლამპარელოვ, მაშინ აქ მდგრადობები თეორემის ე) პირობები.

ამს პირველად მარადით. გამოვათ, თუ როგორიც უარყოფით მაგალითობა უარყოფით რელაციებში ლამპარელოვის შედეგები წინაპირობები:

\[Y_0 \supseteq Z_1 \land Z_2, \ Y_0 \nsubseteq Z_1, \ Y_0 \nsubseteq Z_2, \ Y_0 \cup Y_1 \supseteq Z_2, \]
\[Y_0 \cup Y_2 \supseteq Z_1, \ Y_0 \cup Y_1 \nsubseteq Z_4, \ Y_0 \cup Y_2 \nsubseteq Z_4, \ Y_0 \cup Y_1 \cup Y_2 \neq X. \]

გ. თუ მ = \(((Z_1 \cap Z_2) \times Z_0) \cup ((Z_2 \setminus Z_1) \times Z_1) \cup ((Z_1 \setminus Z_2) \times Z_2) \cup ((X \setminus Z_4) \times Z_4)\) ნიშანი მუდმივარირებულ ლამპარელოვ.

გამოვათ, თუ მოცემული თეორემის ე) პირობები, მაშინ ა მარადით მარადით მარადით ამის \(B_X(D) \) ხაზების შესაქმნელად მუდმივარირებულ ლამპარელო.

თეორემა ლამდაგებულად.
§ 5. \(B_x(D) \) ნაწილებებთან თანადგომის ელემენტების
ლინერული ფორმულები

ლინერული მოდელზე, \(B_x(D) \) ნაწილებების, სადაც \(D \) არის \(\Sigma_i(X, 5) \) ელემენტი ნაწილების ჯგუფ.

დასტურით, \(t \in \{a,b,c,d,e,f,g\} \), სადაც \(a,b,c,d,e,f,g \) ტყურები 4.1 წინ მითითებული ნაწილებთან თანადგომის პირობამდე. \(B_x(D) \) ნაწილებების თანადგომულ ელემენტებს, რომლის რაოდენობის ტყურები 4.1 წინ სწორი წინამორბილი ლინერული ექსპრესია გამარჯობა. სექტორი საჭირო იყო მომცნებრობლები ელემენტების ხაზები მომარჯვი არჩევნით \(R_i \)-თან, ხოლო \(B_x(D) \) ნაწილების გამარჯობა ჩვეულებრივ ლინერულ ექსპრესია მომარჯვე არჩევნით \(R \)-თან. ამით მცხოვრები, რომ

\[
|R| = |R_a| + |R_b| + |R_c| + |R_d| + |R_e| + |R_f| + |R_g|
\]

\(R(i,j,k) \)-თან არჩევნით გამარჯ. წესი მომარჯვი ელემენტების მომარჯვე, რომლები მომარჯვი წრიულთან სამარტყვლად მომარჯული \(D \) ნაწილებების \(Z_i, Z_j \)
და \(Z_k \) ელემენტებმა.

სჭირდება, რომ

\[
| R_a | = | D | = 5,
\]
\[
| R_b | = | R(0,1) | + | R(0,2) | + | R(0,4) | +
\[
| R(1,4) | + | R(2,4) | + | R(3,4) |,
\]
\[
| R_c | = | R(0,1,4) | + | R(0,2,4) |,
\]
\[
| R_d | = | R(0,1,2) |,
\]
\[
| R_e | = | R(0,1,2,4) |,
\]
\[
| R_f | = | R(0,3) |
\]
\[
| R_g | = | R(0,3,4) |.
\]
ლეგუ 5.1. თუ $D \in \Sigma_1(X, 5)$ და X სხეული სხეულშია, შენიშვნა $B_x(D)$
ხანგრძლივი სხეულისგან შექმნილი გარეშე
$$|R_x| = 6 \cdot \left(2^{\left\lfloor \frac{|x|}{2} \right\rfloor} + 2^{\left\lfloor \frac{|x|}{4} \right\rfloor} - 2^{\left\lfloor \frac{|x|+1}{4} \right\rfloor}\right).$$

გამორჩევის: თუ მოგვანხილნილი ელემენტი ტიპია პროდუქციის თეორემა 4.1-ის
b) პრობლემა (1) მითითებამ, შენმა შეს უდა შეხედ: $\alpha = (Y \times Z) \cup (Y' \times Z')$, ხოლო
$Z \subseteq Z'$ და Y, Y' ჭეშური X სხეულში იყო დარგდებათ, რომ $Y \supseteq Z_0$ და
$Y \supsetneq Z_4$.

![Diagram](image)

T_1-თა ადგენილია $Z_4 \setminus Z_0$-ის ნერგები საქონლაში შექმნილი გარეშე; T_2-თა
ადგენილია $X \setminus Z_4$ სხეულისგან ნერგები შექმნილი გარეშე. Y და Y'-თა ვა
ადგენილი სხეულში

$$Y = Z_0 \cup T_1 \cup T_2,$$

$$Y' = X \setminus Y.$$

მაგალითი, რომ Y და Y' ჭეშური X სხეულში იყო დარგდებათ, რთულად
შექმნილი იყო $Y \supseteq Z_0$ და $Y \supsetneq Z_4$ პრობლემა, ისეთი თეორემა 4.1-ის ძალა
$$\alpha = (Y \times Z) \cup (Y' \times Z')$$
ახლა $B_x(D)$ ხანგრძლივი სხეულისგან შექმნილი ელემენტი, რთულად შექმნილი ან
b) პრობლემა (1) მითითება. თუმცა სხვა T_1 და T_2 შემდეგ შექმ.

72.
სახელწოდებით რეალურად ვალდებული, ამოცანა არ არსებობს ისე, რომ უერთდებოდა
 თავდაპირველი, სიმბოლო სულით ქორწინების შემთხვევაში, თუმცა (1) პირველი ნომერი რეალურად ვალდებული, ამოცანა (T₁, T₂)
შედგება შემთხვევით თავმჯდომარე მოთხოვნა, რომ უერთდებოდა თავდაპირველი თანდათანი (T₁, T₂)
მოქმედებისწინე სიმეტრიით.

T₁-ის შექმნის Z₄ \ Zₙ-ის ნეიტორინგი სახელწოდებით ქვემოთ ნიშნებათ, მდგომა ნაქვთ თავმჯდომარე შემთხვევით, ამოცანა (T₁, T₂) შედგება შემთხვევით თავმჯდომარე მოთხოვნა, რომ უერთდებოდა
თავდაპირველი თანხმოვნურ მოთხოვნის შემთხვევაში. ამიტომ, ყოველი ართმოქმედებით
თანხმოვნურ თანდათანი (T₁, T₂) შედგება შემთხვევით თავმჯდომარე მოთხოვნა.

მაგალითი მქონე თავმჯდომარე - T₂-ის შექმნის X \ Z₄-ის ნეიტორინგი სახელწოდებით, რომ უერთდებოდა თავმჯდომარე შემთხვევით, ამოცანა (T₁, T₂) შედგება შემთხვევით თავმჯდომარე მოთხოვნა, რომ უერთდებოდა თავდაპირველი თანხმოვნურ თანდათანი (T₁, T₂) შედგება შემთხვევით თავმჯდომარე მოთხოვნა.

აღნიშნული შედეგით, თუ Y = Z₃ ∪ T₁ ∪ T₂,

Y' = X \ Y.

ამისთვის, თუ Y და Y' შედგება X ნეიტორინგი ისე, რომ უერთდებოდა Y ⊇ Z₃ და Y ⊇ Z₄ პირობებს. ამიტომ თეორემა 4.1-ის თანხმოვნათ, რომ Bₓ(D) ნეატელიერიზებული რეალურად ვალდებული, თუმცა არა არსებობს ისე, რომ ბ) პირველი ნო (2) მოქმედების შედეგით.

მგზავრ ჩამოღებული მაღალჯამა ძალამდე გამდიდრებით, თუ Y = Z₃ ∪ (Y' ∪ Z₄) ნახსენ მგზავრლობით ვალდებულების თავდაპირველი გადამყარებით,
გამჭვირვალე გავლენისთვის თუ არჩევითობებს ბ) პარამეტრი (1) პარამეტრულის სახით გამჭვირვალე გავლენის ამჯერ პარამეტრი (2) პარამეტრულის ჯამ პარამეტრთან, თანამედგომ ინგრამ D ნახვასთან ახლანდებოდეს Z, Z' გავლენების შემდეგ, როგორ Z ⊆ Z', გარეგნობით გავლენების შედეგითაც შედეგით

\[2|xyz| - 2|xz| + 2|zx| - 2|xz| = 2|xyz| + 2|zx| - 2|zx| + 1.

\[|R_0,1| = |R(0,2)| = |R(0,4)| = |R(1,4)| + |R(2,4)| + |R_{34}| = 2|xz| + 2|zx| - 2|zx| + 1.

\[|R_b| = 6(2|xyz| + 2|zx| - 2|zx| + 1)

ლეგი ლუბჯაოთურავს.

ლეგი 5.2. თუ D ∈ Σ(X, 5) და X საბომცევა სიმრავლი, შემდეგ B_x(D) ნახვასთან ახლანდებოდეს გავლენის შედეგით

\[|R_c| = 2.3^{|xyz|} \left[(2|z_1v_1| - 1) \cdot (3|z_1v_2| - 2|z_1v_3|) + (2|z_2v_1| - 1) \cdot (3|z_2v_2| - 2|z_2v_3|) \right].

ლახამების. გასახელები T_i რიგი Z_i \setminus Z_0 სიმბოლოს ხაზისათვის საჭიროა, თუმცა T_i რიგი T_i სიმბოლოს დაბალდება Z_i \setminus Z_0 სიმბოლებით.

T_2 და T_2' რიგი Z_4 \setminus Z_i სიმბოლოს ხაზისათვის თხზულებითად მიენიჭავენ, ამიტომ

\[T_2 ∪ T_2' ≠ Z_4 \setminus Z_i.

75
\(T_1, T'_1 \) აქობ \(X \setminus Z_4 \) სირატვისთვის ტახტული წყალმთლობული.

გემოთავისუფლი განიზრდება:

\[
\begin{align*}
Y_0 &= Z_0 \cup T_1 \cup T_2 \cup T_3, \\
Y_2 &= T_1 \cup T'_1 \cup T'_3, \\
Y_4 &= X \setminus (Y_0 \cup Y).
\end{align*}
\]

აქ გაგვაჩნია, რომ

\[
\alpha = (Y_0 \times Z_0) \cup (Y_2 \times Z) \cup (Y_4 \times Z_4)
\]

აქ ჩვენ გამოყენებულ ქართული ლანგვარით, რომელიც სს გამოყენებული ბილდავითი ფორმულით 4.1. გ) ნიშნით (1) ბოლომდე.

მადოქამდე წყალმთლობა გამოყენებით \((Y_0, Y_2, Y_4)\) ფარდაულია ანგულლო.

\(Y_0 \) გამოყენებით სირატვისთვის \(T_1, T_2, T_3 \) იხილეთქვათ.

\(Y_2 \) გამოყენებით სირატვისთვის \(T_2 \) და \(T'_3 \)-ით, ხოლო \(\bar{T}_1 \) უკეთ გამოყენებით \(T_1 \)-ით, რომლით \(T_1 \) იხილეთქვათ ანგულებით \(Z_1 \setminus Z_0 \) სირატვისთვის.

\(Y_4 \) გამოყენებით \(Y_0 \) და \(Y_2 \) იხილეთქვათ.

აქვენი, \((Y_0, Y_2, Y_4)\) სირატვით და გამოყენებით ფარდაულ ქართულ ლანგვარით \(B_x(D) \) გამოყენებით.

\[
\alpha = (T_1, (T_2, T'_2), (T_3, T'_3))
\]

სახელმწიფო.

აქ გავაჩნია, რომ გამოყენებული \((Y_0, Y_2, Y_4)\) სირატვით მათზებად გამოყენებით \(T_1, (T_2, T'_2), (T_3, T'_3) \) სახელმწიფო, რომლით \(T_1, (T_2, T'_2), (T_3, T'_3) \) სახელმწიფო წყალმთლობა \(X \) იხილეთქვათ.
T_i არის $Z_i \setminus Z_0$ სიმრავლის ნელობის საგანგებო ქვეყანობა. ამიტომ მიუხედავად საბუდო პოსტულა მომართულია ქალაქის კამათზე ჯგუფი $2^{|Z_i Z_0|} - 1$.

მაგრამ კისიმეტრების არის $Z_4 \setminus Z_1$ სიმრავლის ნელობის თანამედროვე ჯგუფი $\left(T_2, T'_2 \right)$ წვდომი, სადაც არხეთ, რომ $T_2 \cup T'_2 \neq Z_4 \setminus Z_1$. აქვს 1.2-ია შემდეგ 1-ია თანახმად ახლო დახვრეული წვრთნა კამათი, და მონაცემთა მიუხედავად კისიმეტრების თანამედროვე ჯგუფი $3^{|Z_4 Z_1|} - 2^{|Z_i Z_0|}$.

$\left(T_3, T'_3 \right)$ არის $X \setminus Z_4$ სიმრავლის თანამედროვე ჯგუფი $\left(T_3, T'_3 \right)$ წვრთნა, რომლითაც ქალაქის კამათზე დაჭირდება ჯგუფი $2^{|Z_i Z_0|} - 1$.

აღნიშნულად, $B_x(D)$ ნელობაში არის $a = (Y_0 \times Z_0) \cup (Y_2 \times Z) \cup (Y_4 \times Z_4)$ სიმრავლის ნელობა. ამათი შედარებით ნელი ნელობა $Z = Z_1$ უკართია და ა) პირველი (1) რადგამი, ჯგუფი $\left(2^{|Z_1 Z_0|} - 1 \right) \cdot \left(3^{|Z_4 Z_1|} - 2^{|Z_i Z_0|} \right) \cdot 3^{|X Z_1|}$.

აღნიშნულად ჯგუფი $B_x(D)$ ნელობაში არის $a = (Y_0 \times Z_0) \cup (Y_1 \times Z) \cup (Y_4 \times Z_4)$ სიმრავლის ნელობა. ამისათვის უნდა გამოიყენოთ ნელობის რადგამი, იმათეთით ნელობის ა) პირველი (1) რადგამი, ჯგუფი $\left(2^{|Z_1 Z_0|} - 1 \right) \cdot \left(3^{|Z_4 Z_1|} - 2^{|Z_i Z_0|} \right) \cdot 3^{|X Z_1|}$.

აღსანიშნავია, რომ $B_x(D)$ ნელობაში არის ნელობის ჩივში ნელი ნელობა $Z = Z_2$ უკართია და ა) პირველი (1) რადგამი, ჯგუფი $\left(2^{|Z_1 Z_0|} - 1 \right) \cdot \left(3^{|Z_4 Z_1|} - 2^{|Z_i Z_0|} \right) \cdot 3^{|X Z_1|}$.

ამათეთით უზრუნველყოფთ შაღალი, რომ $B_x(D)$ ნელობაში არის ნელობის ჩივში ნელი ნელობა $Z = Z_3$ უკართია და ა) პირველი (2) რადგამი, ჯგუფი $\left(2^{|Z_2 Z_0|} - 1 \right) \cdot \left(3^{|Z_4 Z_1|} - 2^{|Z_i Z_0|} \right) \cdot 3^{|X Z_1|}$.

და მოსახლეობა, ა) ჯგუფი უზრუნველყოფს ჩივში ნელობის ჩივში ნელობა ჯგუფი $\left(2^{|Z_1 Z_0|} - 1 \right) \cdot \left(3^{|Z_4 Z_1|} - 2^{|Z_i Z_0|} \right) \cdot 3^{|X Z_1|}$. 77
$|R_c| = 2 \cdot 3^{\log_2 |x|} \cdot \left[\left(2^{|z_1\cdot z_2|} - 1 \right) \cdot \left(3^{|z_1|} - 2^{|z_1|} \right) + \left(2^{|z_1\cdot z_2|} - 1 \right) \cdot \left(3^{|z_1|} - 2^{|z_1|} \right) \right].$

ლაპარაკო დამდეგილი პარაგრაფი.

5.3. თუ $D \in \Sigma_2(X \setminus 5)$ და X საბოლოო სიმრავლე, მაშინ $B_x(D)$
ხელმძღვანელწამა $d)$ წესის უკანა სახელწოდების ლადინგილობის კომპონენტი
$|R_d| = 2 \cdot 3^{\log_2 |x|} \cdot \left(2^{|z_1\cdot z_2|} - 1 \right) \cdot \left(2^{|z_1\cdot z_2|} - 1 \right).$

აქვს მნიშვნელოვანი პასუხ. თუმცა T_1 აქო $Z_1 \setminus Z_2$ სხინებით ნებისმიერი ხარჯებით
ქერხებისთვის, თუმცა \bar{T}_1 აქო T_1 სხინებით დაახლოებით $Z_1 \setminus Z_2$ სხინებით.

ამით, T_2 აქო $Z_2 \setminus Z_1$ სხინებით ნებისმიერი ხარჯებით
ქერხებისთვის, თუმცა \bar{T}_2 აქო T_2 სხინებით დაახლოებით $Z_2 \setminus Z_1$ სხინებით.
T_3, \bar{T}_3, T_3' და T_3'' ქნიშვნები $X \setminus Z_4$ სხინებით დახმარებით.

ქერქვალი აღნიშნულება:

$Y_0 = (Z_1 \cap Z_2) \cup T_1 \cup T_2 \cup T_3,$

$Y_1 = \bar{T}_2 \cup T_3',$

$Y_2 = \bar{T}_1 \cup T_3''.$

აღნიშნულ საერთაშორისოში, თუმცა

$\alpha = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_2 \times Z_2)$

ხელმძღვანელწამა სამხრეთით გარემოა ლითონური წყარო 4.1.-ის $d)$ პარაგრაფი (2) პარაგრაფში.

ასეთი α ხელმძღვანელი ლადინგილობა. ის ლადინგილო თავისად გარემოა მოქცეული ლადინგილობა

$(T_1, T_2, (T_3, T_3'))$

საერთაშორისო.
ამგვარად უკავშირება სახელმწიფო პარამეტრებს (\(T_1\) და \(T_2\)) უკავშირება სახელმწიფო პარამეტრებში ბოლოხორების სხვადასხვაობა იფიქრება \(2^{\left| x_{1z_1} \right|} - 1\) და \(2^{\left| z_{1z_1} \right|} - 1\).

\((T_3, T'_3)\) დახმარებით პუნქტივი ქრონოლოგია როგორც \(3^{\left| x_{1z_1} \right|}\) გრადიურა.

ხელმწიფო \(0\) ბოლოხობის, რომელიც დახმარებით \((T_1, T_2, (T_3, T'_3))\) ბოლოხობის რაოდენობის ფორმულა

\[
3^{\left| x_{1z_1} \right|} \cdot \left(2^{\left| z_{1z_1} \right|} - 1\right) \cdot \left(2^{\left| z_{1z_1} \right|} - 1\right).
\]

d) პირველი (1) მინიმუმში ლეგენდრესტის პარამეტრების და იმ სიდიდით

აპლიცირებული ბოლოხობის რაოდენობის ფორმულა \(3^{\left| x_{1z_1} \right|} \cdot \left(2^{\left| z_{1z_1} \right|} - 1\right) \cdot \left(2^{\left| z_{1z_1} \right|} - 1\right).

ამით არჩქილი, რომ d) ბოლოხობა ზემოთ განცხადება არაფრთხილი რაოდენობა.

\[
| R_d | = 2 \cdot 3^{\left| x_{1z_1} \right|} \cdot \left(2^{\left| z_{1z_1} \right|} - 1\right) \cdot \left(2^{\left| z_{1z_1} \right|} - 1\right).
\]

5.4. თუ \(D \in \Sigma(X, 5)\) და \(X\) სრულიად სახისიანი, მაშინ \(B_x(D)\)

ბოლოხობის ქვემოთ ქიმეროლოგიი ლეგენდრეს რაოდენობა

\[
| R_e | = 2 \cdot \left(4^{\left| x_{1z_1} \right|} - 3^{\left| x_{1z_1} \right|}\right) \cdot \left(2^{\left| z_{1z_1} \right|} - 1\right) \cdot \left(2^{\left| z_{1z_1} \right|} - 1\right).
\]

ამოცანის. ამ მქონებში შეიძლება იდგა ბოლოხობა, როგორც \(R_d\)-ს

განხორციული, მათგან \((T_3, T'_3, T''_3)\) ბოლოხობის ქვემოთ ქიმეროლოგიი, რომლები

\(T_3 \cup T'_3 \cup T''_3 \neq X \setminus Z_4\), მრავლია ასეთი სახელმწიფო რაოდენობის ფორმულა \(4^{\left| x_{1z_1} \right|} - 3^{\left| x_{1z_1} \right|}\)

და შესაძლებლობა ამ ასეთი დახმარებით ლეგენდრეს რაოდენობის ფორმულა

\[
| R_e | = 2 \cdot \left(4^{\left| x_{1z_1} \right|} - 3^{\left| x_{1z_1} \right|}\right) \cdot \left(2^{\left| z_{1z_1} \right|} - 1\right) \cdot \left(2^{\left| z_{1z_1} \right|} - 1\right).
\]

ამავდროულად, 79
ლთ. 5.5. თუ $D \in \Sigma_1 (X, \mathbb{S})$, X შენჯინარი ნახატები და $Z_0 \cap Z_3 = \emptyset$, მაშინ f და $g)$ ლთ. უვარი ნერგვირული კალკულური თანამებრუნეობა შესახები პრინციპი ფორმულა ქუთხეტი

$$|R_f| = 2^{|X \cup Z_4|}$$

და

$$|R_g| = 2 \cdot (3^{|X \cup Z_4|} - 2^{|X \cup Z_4|})$$

დაფინიტიონი. თუმცა $Z_0 \cap Z_3 = \emptyset$ და T არის $X \setminus Z_4$ სოხუმიანი ნერგვმობო ქუთხეტი შესახები, შეიძლება \bar{T} არის T ნერგვირული დახმარება $X \setminus Z_4$ შესახებ.

შეხვედრილი აღნიშნულება:

$$Y_0 = Z_3 \cup T,$$

$$Y_1 = Z_0 \cup \bar{T}.$$

მაგრამ, Y_0 და Y_1 გადადება X ნერგვირული სექცია დახმარება, რათა სოჯიმპლექტი $Y_0 \supseteq Z_3,$

$Y_3 \supseteq Z_0$ შენჯინარი აქტიურობი რთული დღეთ 4.1. ამ შემთხვევაში

$$\alpha = (Y_0 \times Z_0) \cup (Y_3 \times Z_3)$$

ართ $B_\epsilon (D)$ ნერგვირული ნერგვირული კალკულური შესახები. მათი შეფართები უნდა იყოს აღქრონე, რათა T შეფართებული სახული მოგვით, ალბი $2^{|X \cup Z_4|}$. ალბი ამ შეფართებით კალკულური შემთხვევა, რათა შევითაროთ ლთ. $f)$ პრინციპის (1) პოზიციამ, უწყება შედეგმა. ალბით, სწორადი შედეგმა,

$$|R_f| = 2 \cdot 2^{|X \cup Z_4|} = 2^{|X \cup Z_4|+1}.$$

თუ T_1 და T_2 არის $X \setminus Z_4$-ის არსებულ თანამებრუნეობა ქუთხეტი შესახებ, რათა

$T_1 \cup T_2 \neq X \setminus Z_4$, შეიძლება

$$Y_0 = Z_1 \cup T_1,$$

$$Y_3 = Z_0 \cup T_2,$$

80
$Y_4 = X \setminus (Y_0 \cup Y_5)$

ობრივი X სიმრგვას მეოთხე კონსტრუქცია, თუმცა $Y_0 \subseteq Z_3$, $Y_3 \subseteq Z_1$ და $Y_0 \cup Y_3 \neq X$, იმედით $a = (Y_0 \times Z_0) \cup (Y_3 \times Z_3) \cup (Y_4 \times Z_4)$ მონაცემი მოსასვლელა არსებობს $B_x(D)$ ბეჭდებზე წარმოქმნილი განყოფილება. თემი 4.1-ის g) პარამეტრ (2) დამოკიდებულების უზრუენა მათემატიკის ფონით გამოთვალა. იმასთან შემდეგ, გამოთვალა Bx(D) დამოკიდებული წელიწადი $Y_0 \setminus (Y_0 \cup Y_3 \neq X \setminus Z_4)$. მიხედვით $Y_0 \setminus (Y_0 \cup Y_3 \neq X \setminus Z_4)$, აღსწორება თავისი მოდელით $Y_0 \setminus (Y_0 \cup Y_3 \neq X \setminus Z_4)$.

ამ მასშტაბში ქვემოთ წართქმული კონსტრუქცია, რომლის მიხედვით g) პარამეტრ (1) მოთხოვნის, აღსწორება გამოიწვიება

$$|R_6| = 2 \cdot (3|XYZ_1| - 2|XYZ_2|).$$

ლურჯ დამოკიდებულია.

თემი 5.1. თუ $D = \{Z_0, Z_1, Z_2, Z_3, Z_4\} \in \Sigma_1(X, 5)$ და X სიმრგვა მოდელი, ოთხი B x(D) ბეჭდებზე წარმოქმნილი განყოფილება შეიძლება ფორმულირდეს:

a) $|R_0| = 5 + 6 \cdot \left(2|XYZ_1| + 2|XYZ_2| - 2|XYZ_4|\right) + 2 \cdot 3|XYZ_1| \cdot \left[(2|Z_4| - 1) \cdot (3|Z_4| - 2|Z_4|) + \right.$

$$+ \left(2|Z_2| - 1 \cdot (3|Z_2| - 2|Z_2|)\right] + 2 \cdot 4|XYZ_1| \cdot (2|Z_2| - 1),$$

რომელ Z_0 \cap Z_3 \neq \emptyset ;

b) $|R_2| = 5 + 6 \cdot \left(2|XYZ_1| + 2|XYZ_2| - 2|XYZ_4|\right) + 2 \cdot 3|XYZ_1| \cdot \left[(2|Z_4| - 1) \cdot (3|Z_4| - 2|Z_4|) + \right.$

$$+ \left(2|Z_2| - 1 \cdot (3|Z_2| - 2|Z_2|)\right] + 2 \cdot 4|XYZ_1| \cdot (2|Z_2| - 1) + 2 \cdot 3|XYZ_4|,$$

რომელ Z_0 \cap Z_3 = \emptyset .

დამოკიდებულია. რომლ Z_0 \cap Z_3 \neq \emptyset , საიდაც თემი 4.1-ის თავისი $R_f = \emptyset$

$R_0 = \emptyset$. დამოკიდებული განყოფილება თანამშობიდ
\[| R_b | = 6 \cdot \left(2^{\|x|z|} + 2^{\|x|z|} - 2^{\|x|z|+1} \right), \]

\[| R_c | = 2 \cdot 3^{\|x|z|} \cdot \left(\left(2^{\|z|v|} - 1 \right) \cdot \left(3^{\|z|v|} - 2^{\|z|v|} \right) + \left(2^{\|z|v|} - 2^{\|z|v|} \right) \right), \]

\[| R_d | = 2 \cdot 3^{\|x|z|} \cdot \left(2^{\|z|v|} - 1 \right) \cdot \left(2^{\|z|v|} - 1 \right), \]

\[| R_e | = 2 \cdot \left(4^{\|x|z|} - 3^{\|x|z|} \right) \cdot \left(2^{\|z|v|} - 1 \right) \cdot \left(2^{\|z|v|} - 1 \right), \]

\[| R_f | = 5. \]

აღნიშნულ ბაზუმიფრთებს, რთულ

\[| R_d | + | R_e | = 2 \cdot 4^{\|x|z|} \cdot \left(2^{\|z|v|} - 1 \right) \cdot \left(2^{\|z|v|} - 1 \right). \]

სპასოდე, რთულ ქვემოთ \(Z_0 \cap Z_3 \neq \emptyset \), ხოლო მოგომაც

\[| R | = 5 + 6 \cdot \left(2^{\|x|z|} + 2^{\|x|z|} - 2^{\|x|z|+1} \right) + 2 \cdot 3^{\|x|z|} \cdot \left[\left(2^{\|z|v|} - 1 \right) \cdot \left(3^{\|z|v|} - 2^{\|z|v|} \right) + \left(2^{\|z|v|} - 1 \right) \cdot \left(3^{\|z|v|} - 2^{\|z|v|} \right) \right] + 2 \cdot 4^{\|x|z|} \cdot \left(2^{\|z|v|} - 1 \right) \cdot \left(2^{\|z|v|} - 1 \right). \]

ქვემო ქვემოთ \(Z_0 \cap Z_3 = \emptyset \), ხოლო მოგომაც \(f \) ღონის და \(g \) ღონის ლამბერგინიშვილი

უმეცირით, რთულ \(\text{ლამბერგინიშვილი} \) \(\text{უმეცირითი} \)

\[| R_f | + | R_g | = 2 \cdot 2^{\|x|z|} + 2 \cdot 3^{\|x|z|} = 2 \cdot 3^{\|x|z|}. \]

ფიქსირება, უფრო ქრონოლოგიური უმეცირითი ქონლის თანახმად

\[| R | = 5 + 6 \cdot \left(2^{\|x|z|} + 2^{\|x|z|} - 2^{\|x|z|+1} \right) + 2 \cdot 3^{\|x|z|} \cdot \left[\left(2^{\|z|v|} - 1 \right) \cdot \left(3^{\|z|v|} - 2^{\|z|v|} \right) + \left(2^{\|z|v|} - 1 \right) \cdot \left(3^{\|z|v|} - 2^{\|z|v|} \right) \right] + 2 \cdot 4^{\|x|z|} \cdot \left(2^{\|z|v|} - 1 \right) \cdot \left(2^{\|z|v|} - 1 \right) + 2 \cdot 3^{\|x|z|}. \]

თურქული ქონლის თანახმად.

შეამოწმეთ. ზოლამ, \(X = \{1;2;3\} \) და \(D = \{\{1\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}. \)

თეორემა 5.1-ის თანახმად

\[| R | = 5 + 6 \cdot (2^2 + 2 - 2) + 2 \cdot 3^0 \cdot [(2 - 1) \cdot (3 - 2) + (2 - 1) \cdot (3 - 2)]
\[+ 2 \cdot 4^0 \cdot (2 - 1) \cdot (2 - 1) + 2 \cdot 3^0 = 5 + 24 + 4 + 2 + 2 = 37. \]
§ 6. $B_x(D)$ ნამტერეგის მაგისტარო შექმნაზე

დადგენილია, რომ $D \in \Sigma_t(X, 5)$, საერთო ე რომ $B_x(D)$ ნამტერეგის აღმოსავლენად გვესაბურით. $G_x(D, \varepsilon)$ სიმძლავრით დახვრევით $B_x(D)$ ნამტერეგის ან მაგისტარო შექმნაზე, რომლის ურთიერთობა არის ε გვესაბურით გვესაბურით.

ჰქონდა თბილი შეფასება $B_x(D)$ ნამტერეგის მაგისტარო შექმნაზე $G_x(D, \varepsilon)$ შექმნაზე არსებული.

თანხამდელი $\alpha \in G_x(D, \varepsilon)$, ამისთვის არქიული მაგისტარო შექმნაზე შექმნაზე თითოეულ არსებული $\alpha' \in G_x(D, \varepsilon)$ შექმნაზე ურთიერთობა დაფუძნება, რომ ε-ს რომელიც შექმნა გამოტოლილი

\[\begin{align*}
 \alpha \circ \varepsilon &= \alpha, \\
 \varepsilon \circ \alpha &= \alpha, \\
 \alpha \circ \alpha' &= \varepsilon, \\
 \alpha' \circ \alpha &= \varepsilon, \\
 \alpha' \circ \varepsilon &= \alpha', \\
 \varepsilon \circ \alpha' &= \alpha'.
\end{align*}\]

შეგანსხვავებით, რომ $G_x(D, \varepsilon)$ შექმნაზე ურთიერთობა არსებული $B_x(D)$ ნამტერეგის მაგისტარო შექმნაზე.

თეორემა 6.1. მაგისტარო $G_x(D, \varepsilon)$ შექმნაზე ურთიერთო ა უღიანგების რომელი შესაძლოა მითითოთ ε-თვის ხარჯები, რომელიც შექმნაზე არსებულ პირობებებთან ერთმანეთში.

ლაკაჯიმაჰ (2) დალაგიძის ხაზით $\varepsilon \circ \alpha = \alpha$. გვნებაქმება, რომ

\[|\bar{B}(\alpha)| \leq |\bar{B}(\varepsilon)|,\]

სადაც $\bar{B}(\alpha)$ სიმძლავრით დახვრევით ა უღიანგების წინამდები შექმნაზე D ნამტერეგის უღიანგების სიმძლავრა.

83
(3) გებლობის მართეთი $a \cdot a' = \varepsilon$, ეს წითელი წინადობა, რომლითაც
$$|\vec{D}(\varepsilon)| \leq |\vec{D}(a)|$$
ლოგიკურად $|\vec{D}(a)| = |\vec{D}(\varepsilon)|$.

რადგან $a \cdot a = a$ და $|\vec{D}(a)| = |\vec{D}(\varepsilon)|$, ამიტომ ა ლეგანტის ნიმუშად ქართული წარმოადგენს რამდენიმე დახმარებათა თანხამდენი. ამიტომ გადაწყვეტვა გამოიყენება და ლეგანტის ნიმუშად ქართული წარმოადგენის. ლოგიკურად $\vec{D}(a) = \vec{D}(\varepsilon)$.

რადგან $\varepsilon \cdot a = a$ და $\vec{D}(a) = \vec{D}(\varepsilon)$, ამიტომ ა ლეგანტის ნიმუშად ქართული წარმოადგენს განსხვავებით პირობითი რეჟიმების თანხამდენი. ვინაიდან ე ლეგანტის ნიმუშად ქართული წარმოადგენის გამოიყენება პირობითი რეჟიმებით.

თურქული ლანგუაჟი.

თურქული 6.2. თუ $D \in \Sigma_1(X, S)$, მაშინ $B_X(D)$ ხანგრძლივობის ხაზით $G_X(D, \varepsilon)$ შექმნილი არის მოქალაქი, რომლის სიმაღლე არ აღინგავს 2-b.

ლანგუაჟი. თურქული 6.2. თუ $D \in \Sigma_1(X, S)$, მაშინ $B_X(D)$ ხანგრძლივობის ხაზით $G_X(D, \varepsilon)$ შექმნილი არის მოქალაქი, რომლის სიმაღლე არ აღინგავს 2-b.

ლანგუაჟი. თუ $D \in \Sigma_1(X, S)$, მაშინ $B_X(D)$ ხანგრძლივობის ხაზით $G_X(D, \varepsilon)$ შექმნილი არის მოქალაქი, რომლის სიმაღლე არ აღინგავს 2-b.

თურქული 6.2. თუ $D \in \Sigma_1(X, S)$, მაშინ $B_X(D)$ ხანგრძლივობის ხაზით $G_X(D, \varepsilon)$ შექმნილი არის მოქალაქი, რომლის სიმაღლე არ აღინგავს 2-b.

ლანგუაჟი. თუ $D \in \Sigma_1(X, S)$, მაშინ $B_X(D)$ ხანგრძლივობის ხაზით $G_X(D, \varepsilon)$ შექმნილი არის მოქალაქი, რომლის სიმაღლე არ აღინგავს 2-b.

ლანგუაჟი. თუ $D \in \Sigma_1(X, S)$, მაშინ $B_X(D)$ ხანგრძლივობის ხაზით $G_X(D, \varepsilon)$ შექმნილი არის მოქალაქი, რომლის სიმაღლე არ აღინგავს 2-b.

ლანგუაჟი. თუ $D \in \Sigma_1(X, S)$, მაშინ $B_X(D)$ ხანგრძლივობის ხაზით $G_X(D, \varepsilon)$ შექმნილი არის მოქალაქი, რომლის სიმაღლე არ აღინგავს 2-b.
სასვენი Z და Z' არჩევითი ჰასაგისწერილი ნაწილი კლასიფიკაცია, რომელიც $Z \subset Z'$, ხოლო Y და Y' ჰქონდნენ X ისტორიულ ნაწილი განმართვა, რომლებიც $Y \supseteq Z$ და $Y \not\subset Z'$ იყოს.

ამ თქვენისწერით $G_x(D, \varepsilon)$ ჯგუფში ე ორივე კლასიფიცაცია განსხვავებული ლეგენდა თურობა 6.2-ში მითოდ შესახებ იყო მთლიანად
\[\alpha = (Y' \times Z) \cup (Y \times Z). \]

განსაზღვრა ა უწოდება $G_x(D, \varepsilon)$ ჯგუფს ლეგენდა, იმიტომ, რომ $\alpha \circ \alpha \in G_x(D, \varepsilon)$. რას გამორჩევს α ლეგენდის თბილი ნაწილი წინაპრევანი უნივერსალურად უნას იყო Z და Z'

\[\alpha \circ \alpha = [(Y' \times Z) \cup (Y \times Z')] \circ [(Y' \times Z) \cup (Y \times Z')] = (Y' \times Z) \circ (Y' \times Z) \cup \circ (Y \times Z') \circ (Y' \times Z') \cup (Y \times Z) \circ (Y \times Z') = \\
= \emptyset \cup (Y' \times Z') \cup (Y \times Z) \cup (Y \times Z') = (Y' \times Z) \cup (Y \times Z') = \\
= (Y' \cup Y) \times Z' = X \times Z'. \]

მიმდებარე წინაპრევანმა. გამოხატულად, ა არ იყო $G_x(D, \varepsilon)$ ჯგუფის ლეგენდა. ამიტომ, $G_x(D, \varepsilon)$ ჯგუფში ე ლეგენდას ორი განსხვავებული ლეგენდა არ არის შესაძლებელი და ამიტომ ვი შეისრულებთ ჯგუფი არა სტრუქტურა, რომლის ჩატარება არის 1.

ჯგუფი ე არჩევით $B_x(D)$ რაოდენობის ქსი მის ლოკალურობის ლეგენდა, რის

\[\varepsilon = (Y_0 \times Z_0) \cup (Y_1 \times Z_1) \cup (Y_4 \times Z_4), \]

სადაც

\[Y_0 \supseteq Z_0, \ Y_0 \not\supseteq Z_1, \ Y_0 \cup Y_1 \supseteq Z_1, \ Y_0 \cup Y_1 \not\supseteq Z_4. \]

ამ შემთხვევაში, ა არჩევითი $G_x(D, \varepsilon)$ ჯგუფის ორი ლეგენდა, რის მიხედვით $\alpha \neq \varepsilon$ და

\[\alpha = (T_1 \times Z_0) \cup (T_2 \times Z_1) \cup (T_3 \times Z_4), \]

სადაც $T_i \in \{Y_0, Y_1, Y_4\}$.

განსაზღვრა ა არჩევითი მნიშვნელოვანი ლეგენდა, სადაც $T_1 \supseteq Z_0$. და შესაძლოა $T_1 = Y_0$.

თუ თქვენი 6.2-ში მოხსენიება ლეგენდას განსხვავებული ა მისაღმწერლო ჩატარება წინაპრევანი ქსი მთლიანად
\[
\alpha = (Y_0 \times Z_0) \cup (Y_4 \times Z_4) \cup (Y_1 \times Z_1)
\]

ამით, ამ პარამეტრებით მოდელირებით:

\[
\alpha \circ \alpha = (Y_0 \times Z_0) \circ (Y_0 \times Z_0) \cup (Y_4 \times Z_4) \cup (Y_1 \times Z_1) \circ (Y_4 \times Z_4) \cup (Y_1 \times Z_1) \cup (Y_4 \times Z_4) \cup (Y_1 \times Z_1) \circ (Y_4 \times Z_4) \cup (Y_1 \times Z_1)
\]

\[
= (Y_0 \times Z_0) \cup (Y_4 \times Z_4) \cup (Y_1 \times Z_1)
\]

ე.წ. \(\alpha \circ \alpha \in G_x(D,\varepsilon)\), დარგვის შესაძლებლობათა გამოყენება, რომ მაქს. \(|G_x(D,\varepsilon)|=1\) კომ ნაირ ჩანს, რომ გეომ. \(G_x(D,\varepsilon)\) გამოყენებით აღმოჩენილ იქამო რომლის ბიუჯეტი 1.

ამასთან ერთად მოდელირები მოდელირებით ექვ.\((Y_0 \times Z_0) \cup (Y_4 \times Z_4) \cup (Y_1 \times Z_1)\) კომექტორი-სითხალი.

ჯვარულა ე ამის \(B_x(D)\) ბაზასთან აქვს იზო \\(d\) გამო არჩეულთან გამოყენება, ე.წ.

\[
\varepsilon = (Y_0 \times Z_0) \cup (Y_4 \times Z_4) \cup (Y_1 \times Z_1)
\]

სახელმწიფო

\[
Y_0 = Z_1 \times Z_2, Y_0 \cup Y_1 \ni Z_1, Y_0 \cup Y_2 \ni Z_2, Y_0 \ni Z_1, Y_0 \ni Z_2, Y_0 \cup Y_1 \ni Z_4, Y_0 \cup Y_4 \ni Z_4.
\]

უფრო \(G_x(D,\varepsilon)\) ჯგუფში გამოყენებით შემთხვევა, რომელიც გრძელია განვითარდება, ექვ.\(\varepsilon\) არა ყოფილ \(B_x(D)\) ბაზასთან აქვს იზო-პროგრამი გამოყენება, რათა თოლოვა 6.2 მეთოდია მაშინ ვახერხვოთ

\[
\alpha = (Y_0 \times Z_0) \cup (Y_4 \times Z_4) \cup (Y_1 \times Z_1)
\]

სხვა სახით.

\[
\alpha \circ \alpha = (Y_0 \times Z_0) \circ (Y_0 \times Z_0) \cup (Y_4 \times Z_4) \circ (Y_4 \times Z_4) \cup (Y_1 \times Z_1) \circ (Y_4 \times Z_4) \cup (Y_1 \times Z_1) \cup (Y_4 \times Z_4) \circ (Y_1 \times Z_1) \cup (Y_4 \times Z_4) \circ (Y_1 \times Z_1) \cup (Y_4 \times Z_4) \circ (Y_1 \times Z_1) \cup (Y_4 \times Z_4) \cup (Y_1 \times Z_1)
\]

\[
= (Y_0 \times Z_0) \cup (Y_4 \times Z_4) \cup (Y_1 \times Z_1)
\]

ე.წ. \(\alpha \circ \alpha \in G_x(D,\varepsilon)\)-გამოყენებით შემთხვევა.

მართვად, ამ შემთხვევანდება \(G_x(D,\varepsilon)\) არა გამოყენება, რომლის მოდელი
1.

ჯვარულა ე ამის ე) გამო არჩეულთან გამოყენებით შემთხვევა, ამის შემთხვევა

\[
\varepsilon = (Y_0 \times Z_0) \cup (Y_4 \times Z_4) \cup (Y_1 \times Z_1)
\]

86
სახელი

\[Y_0 \supseteq Z_1 \cap Z_2, \ Y_0 \cup Y_1 \supseteq Z_1, \ Y_0 \cup Y_2 \supseteq Z_2, \ Y_0 \varsubsetneq Z_1, \ Y_0 \varsubsetneq Z_2, \ Y_0 \cup Y_1 \varsubsetneq Z_4, \ Y_0 \cup Y_2 \varsubsetneq Z_4 \]

\(G_x(D, \varepsilon) \) ჯგუფის ე ტიპიდობას სახარჯებზე ა ტოლოვად, ისეთ ტოვლიზმებზე, რომელ ამ ჯგუფ იყოს მაგრამ ქალაქი \(B_x(D) \) ბაზისგან ქართული ტოლოვად, ოდერი 4.3.-ის ისტორია შესაძლოდაში წარმოდგენილ აღმოჩენიდან

\[\alpha = (Y_0 \times Z_0) \cup (Y_2 \times Z_1) \cup (Y_1 \times Z_2) \cup (Y_4 \times Z_4) \]

სახით. აქ, მალან ჰარიგიტონგინი, რომ \(a \cdot a = \varepsilon \)

ამოცათ. როგორ ე არსებ ე) გამო ქართული ტოლოვად, მაგრამ \(G_x(D, \varepsilon) \) სპესიმაგიზმი ნაქალაქ არს ტოლოვად ჯგუფი, რომელ რიგში არს 2.

ჯგუფს ე არსებ გ) გამო მეტალანგვილი ტოლოვად. შან.

\[\varepsilon = (Y_0 \times Z_0) \cup (Y_3 \times Z_1), \]

სადაც \(Y_0 \) და \(Y_3 \) არაკ ქს-ის მიერ კლასიფიცირდება, რომ \(Y_0 \supseteq Z_0 \) და \(Y_0 \cap Z_3 = \emptyset \).

შესაფერისი, ამ ჯგუფს ძირულად გარჩევს ტოლოვად, ამასთან ერთად ქალაქი \(B_x(D) \) ბაზისგან ქართული რიგში \(Z_0 \cap Z_3 = \emptyset \).

\(G_x(D, \varepsilon) \) ჰარიგიტონგი ნაქალაქ ჰყავს ტოლოვად, რომ მოყალი ხარაჯობურავად ტიპიდობა ე ტიპიდობას შესაძლოდაში წარმოდგენილ აღმოჩენიდან ხსენება ბაზისგან

\[\alpha = (Y_3 \times Z_0) \cup (Y_0 \times Z_3). \]

გამოყენებითი ფორმულა:

\[a \cdot a = [(Y_0 \times Z_0) \cup (Y_0 \times Z_3)] \cdot [(Y_0 \times Z_3) \cup (Y_0 \times Z_3)] = \]

\[= \emptyset \cup (Y_3 \times Z_3) \cup (Y_0 \times Z_3) \cup \emptyset = (Y_0 \times Z_0) \cup (Y_3 \times Z_1) = \varepsilon. \]

ამოცათ, როგორ ე არსებ ჰ) გამო ძირულად გარჩევს ტოლოვად, მაგრამ \(G_x(D, \varepsilon) \) არ ჯგუფი, რომელიც ჰყავს ტოლოვად ტოლოვად.

ჯგუფს ე არსებ ჰ) გამო ძირულად გარჩევს ტოლოვად. შან.

\[\varepsilon = (Y_0 \times Z_0) \cup (Y_3 \times Z_1) \cup (Y_4 \times Z_4) \]

თურმები 3.1-ის ჰ) პილოტის მიერ გამო მაქს \(Y_0 \cap Z_3 = \emptyset \) და \(Y_0 \supseteq Z_0, \ Y_3 \supseteq Z_3. \)

97
\(G_\lambda(D, \varepsilon) \) - ჯგუფის \(\varepsilon \) კონტროლირებულ განსხვავებულია \(\Delta \) კონტროლი, რომლის შემდეგ ჯგუფი უნდა რეაგიროდეს \(\tilde{D} \), შემდგომი ყოველთან ახლოს განიხილოს ზეთის

\[\alpha = (Y_1 \times Z_0) \cup (Y_0 \times Z_1) \cup (Y_4 \times Z_4) . \]

ამოცანაში,

\[\alpha \circ \alpha = \left[(Y_1 \times Z_0) \cup (Y_0 \times Z_1) \cup (Y_4 \times Z_4) \right] \circ \left[(Y_1 \times Z_0) \cup (Y_0 \times Z_1) \cup (Y_4 \times Z_4) \right] = \]

\[= (Y_1 \times Z_2) \cup (Y_0 \times Z_0) \cup (Y_4 \times Z_0) \cup (Y_4 \times Z_2) \cup \emptyset = \]

\[= (Y_0 \times Z_2) \cup (Y_1 \times Z_0) \cup (Y_4 \times Z_4) = \varepsilon . \]

ამაღლებთ, როგორც \(\varepsilon \) არის \(g \) ჯგუფის თანამსაწინო ჯგუფი, ამ ჯგუფის შესაძლობრობით \(G_\lambda(D, \varepsilon) \) ჯგუფიდან არის შემდგომ ჯგუფის თანამშრომლობა ჯგუფი.

თუთომა ლეხიანგებით.
3. მეტად.

\[
X = \{1, 2, 3\}
\]

\[
D = \{\{1\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}
\]

ლადებით თუ D-ის ლადები ა, ბ, გ, დ და კ-ე. შელადებით თუ ლადები როგორც ხაზში შესაძლოა ბაზალთა ლადებულება კონშულები. ჯერ დასახელებ შელადებით თუ ლადები როგორც ხაზში.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>k</td>
<td>k</td>
<td>k</td>
</tr>
</tbody>
</table>

1. ახალი ლადებები შელადებით საჭირო ლადებულება კონშულები

1) a a a 6) a b a 11) a c a 16) a d a 21) a k a 26) b a a
2) a a b 7) a b b 12) a c b 17) a d b 22) a k b 27) b a b
3) a a c 8) a b c 13) a c c 18) a d c 23) a k c 28) b a c
4) a a d 9) a b d 14) a c d 19) a d d 24) a k d 29) b a d
5) a a k 10) a b k 15) a c k 20) a d k 25) a k k 30) b a k

31) b b a 36) b c a 41) b d a 46) b k a 51) c a a 56) c b a
32) b b b 37) b c b 42) b d b 47) b k b 52) c a b 57) c b b
33) b b c 38) b c c 43) b d c 48) b k c 53) c a c 58) c b c
34) b b d 39) b c d 44) b d d 49) b k d 54) c a d 59) c b d
35) b b k 40) b c k 45) b d k 50) b k k 55) c a k 60) c b k

61) c c a 66) c d a 71) c k a 76) d a a 81) d b a 86) d c a
62) c c b 67) c d b 72) c k b 77) d a b 82) d b b 87) d c b
63) c c c 68) c d c 73) c k c 78) d a c 83) d b c 88) d c c
64) c c d 69) c d d 74) c k d 79) d a d 84) d b d 89) d c d
65) c c k 70) c d k 75) c k k 80) d a k 85) d b k 90) d c k
<table>
<thead>
<tr>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>f_5</th>
<th>f_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(a a a)</td>
<td>(a a b)</td>
<td>(a a c)</td>
<td>(a a d)</td>
<td>(a a k)</td>
<td>(a b a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_7</th>
<th>f_8</th>
<th>f_9</th>
<th>f_{10}</th>
<th>f_{11}</th>
<th>f_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(a b b)</td>
<td>(a b c)</td>
<td>(a b d)</td>
<td>(a b k)</td>
<td>(a c a)</td>
<td>(a c b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_{13}</th>
<th>f_{14}</th>
<th>f_{15}</th>
<th>f_{16}</th>
<th>f_{17}</th>
<th>f_{18}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(a c c)</td>
<td>(a c d)</td>
<td>(a c k)</td>
<td>(a d a)</td>
<td>(a d b)</td>
<td>(a d c)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_{19}</th>
<th>f_{20}</th>
<th>f_{21}</th>
<th>f_{22}</th>
<th>f_{23}</th>
<th>f_{24}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(a d d)</td>
<td>(a d k)</td>
<td>(a k a)</td>
<td>(a k b)</td>
<td>(a k c)</td>
<td>(a k d)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_{25}</th>
<th>f_{26}</th>
<th>f_{27}</th>
<th>f_{28}</th>
<th>f_{29}</th>
<th>f_{30}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(a k k)</td>
<td>(b a a)</td>
<td>(b a b)</td>
<td>(b a a)</td>
<td>(b a d)</td>
<td>(b a k)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_{31}</th>
<th>f_{32}</th>
<th>f_{33}</th>
<th>f_{34}</th>
<th>f_{35}</th>
<th>f_{36}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(b b a)</td>
<td>(b b b)</td>
<td>(b b c)</td>
<td>(b b d)</td>
<td>(b b k)</td>
<td>(b c a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_{37}</th>
<th>f_{38}</th>
<th>f_{39}</th>
<th>f_{40}</th>
<th>f_{41}</th>
<th>f_{42}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(b c b)</td>
<td>(b c c)</td>
<td>(b c d)</td>
<td>(b c k)</td>
<td>(b d a)</td>
<td>(b d b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_{43}</th>
<th>f_{44}</th>
<th>f_{45}</th>
<th>f_{46}</th>
<th>f_{47}</th>
<th>f_{48}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(b d c)</td>
<td>(b d d)</td>
<td>(b d k)</td>
<td>(b k a)</td>
<td>(b k b)</td>
<td>(b k c)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_{49}</th>
<th>f_{50}</th>
<th>f_{51}</th>
<th>f_{52}</th>
<th>f_{53}</th>
<th>f_{54}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(b k b)</td>
<td>(b k k)</td>
<td>(c a c)</td>
<td>(c a b)</td>
<td>(c a c)</td>
<td>(c a d)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_{55}</th>
<th>f_{56}</th>
<th>f_{57}</th>
<th>f_{58}</th>
<th>f_{59}</th>
<th>f_{60}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(c a k)</td>
<td>(c a c)</td>
<td>(c a b)</td>
<td>(c a c)</td>
<td>(c b d)</td>
<td>(c b k)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_{61}</th>
<th>f_{62}</th>
<th>f_{63}</th>
<th>f_{64}</th>
<th>f_{65}</th>
<th>f_{66}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(c c a)</td>
<td>(c c b)</td>
<td>(c c c)</td>
<td>(c c a)</td>
<td>(c d c)</td>
<td>(c d a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_{67}</th>
<th>f_{68}</th>
<th>f_{69}</th>
<th>f_{70}</th>
<th>f_{71}</th>
<th>f_{72}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(c d b)</td>
<td>(c d c)</td>
<td>(c d d)</td>
<td>(c d k)</td>
<td>(c k a)</td>
<td>(c k b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_{73}</th>
<th>f_{74}</th>
<th>f_{75}</th>
<th>f_{76}</th>
<th>f_{77}</th>
<th>f_{78}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(c k c)</td>
<td>(c k d)</td>
<td>(c k k)</td>
<td>(d a a)</td>
<td>(d a b)</td>
<td>(d a c)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_{79}</th>
<th>f_{80}</th>
<th>f_{81}</th>
<th>f_{82}</th>
<th>f_{83}</th>
<th>f_{84}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(d a d)</td>
<td>(d a k)</td>
<td>(d b a)</td>
<td>(d b b)</td>
<td>(d b c)</td>
<td>(d b d)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f_{85}</th>
<th>f_{86}</th>
<th>f_{87}</th>
<th>f_{88}</th>
<th>f_{89}</th>
<th>f_{90}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 2 3)</td>
</tr>
<tr>
<td>(d b k)</td>
<td>(d c a)</td>
<td>(d c b)</td>
<td>(d c a)</td>
<td>(d c b)</td>
<td>(d c k)</td>
</tr>
</tbody>
</table>
\[\begin{align*}
\alpha_{f_3} &= \{(1, 1), (2, 1), (3, 1)\} \\
\alpha_{f_4} &= \{(1, 1), (2, 1), (3, 1), (3, 3)\} \\
\alpha_{f_5} &= \{(1, 1), (2, 1), (3, 1), (3, 2), (3, 3)\} \\
\alpha_{f_6} &= \{(1, 1), (2, 1), (3, 2), (3, 3)\} \\
\alpha_{f_7} &= \{(1, 1), (2, 2), (3, 1), (3, 2)\} \\
\alpha_{f_8} &= \{(1, 1), (2, 2), (3, 2)\} \\
\alpha_{f_9} &= \{(1, 1), (2, 2), (3, 3)\} \\
\alpha_{f_10} &= \{(1, 1), (2, 3), (3, 1), (3, 3)\} \\
\alpha_{f_11} &= \{(1, 1), (2, 3), (3, 1), (3, 2)\} \\
\alpha_{f_{12}} &= \{(1, 1), (2, 3), (3, 2), (3, 3)\} \\
\alpha_{f_{13}} &= \{(1, 1), (2, 3), (3, 2)\} \\
\alpha_{f_{14}} &= \{(1, 1), (2, 3), (3, 3)\} \\
\alpha_{f_{15}} &= \{(1, 1), (2, 3)\} \\
\alpha_{f_{16}} &= \{(1, 1), (2, 3), (3, 1)\} \\
\alpha_{f_{17}} &= \{(1, 1), (2, 3), (3, 2)\} \\
\alpha_{f_{18}} &= \{(1, 1), (2, 3), (3, 3)\} \\
\alpha_{f_{19}} &= \{(1, 1), (2, 3)\} \\
\alpha_{f_{20}} &= \{(1, 1), (2, 3), (3, 1)\} \\
\alpha_{f_{21}} &= \{(1, 1), (2, 3), (3, 2)\} \\
\alpha_{f_{22}} &= \{(1, 1), (2, 3), (3, 3)\} \\
\alpha_{f_{23}} &= \{(1, 1), (2, 3)\} \\
\alpha_{f_{24}} &= \{(1, 1), (2, 3), (3, 1)\} \\
\alpha_{f_{25}} &= \{(1, 1), (2, 3), (3, 2)\} \\
\alpha_{f_{26}} &= \{(1, 1), (2, 3), (3, 3)\} \\
\alpha_{f_{27}} &= \{(1, 1), (2, 3)\} \\
\alpha_{f_{28}} &= \{(1, 1), (2, 3), (3, 1)\} \\
\alpha_{f_{29}} &= \{(1, 1), (2, 3), (3, 2)\} \\
\alpha_{f_{30}} &= \{(1, 1), (2, 3), (3, 3)\} \\
\alpha_{f_{31}} &= \{(1, 1), (2, 3)\} \\
\alpha_{f_{32}} &= \{(1, 1), (2, 3), (3, 1)\} \\
\alpha_{f_{33}} &= \{(1, 1), (2, 3), (3, 2)\} \\
\alpha_{f_{34}} &= \{(1, 1), (2, 3), (3, 3)\} \\
\alpha_{f_{35}} &= \{(1, 1), (2, 3)\} \\
\alpha_{f_{36}} &= \{(1, 1), (2, 3), (3, 1)\} \\
\alpha_{f_{37}} &= \{(1, 1), (2, 3), (3, 2)\} \\
\alpha_{f_{38}} &= \{(1, 1), (2, 3), (3, 3)\} \\
\alpha_{f_{39}} &= \{(1, 1), (2, 3)\} \\
\alpha_{f_{40}} &= \{(1, 1), (2, 3), (3, 1)\} \\
\alpha_{f_{41}} &= \{(1, 1), (2, 3), (3, 2)\} \\
\alpha_{f_{42}} &= \{(1, 1), (2, 3), (3, 3)\} \\
\alpha_{f_{43}} &= \{(1, 1), (2, 3)\} \\
\alpha_{f_{44}} &= \{(1, 1), (2, 3), (3, 1)\} \\
\alpha_{f_{45}} &= \{(1, 1), (2, 3), (3, 2)\} \\
\alpha_{f_{46}} &= \{(1, 1), (2, 3), (3, 3)\} \\
\alpha_{f_{47}} &= \{(1, 1), (2, 3)\} \\
\alpha_{f_{48}} &= \{(1, 1), (2, 3), (3, 1)\} \\
\alpha_{f_{49}} &= \{(1, 1), (2, 3), (3, 2)\} \\
\alpha_{f_{50}} &= \{(1, 1), (2, 3), (3, 3)\} \\
\cdot \cdot \cdot \\
\end{align*} \]
\[\alpha_{1} = (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3) \]
\[\alpha_{2} = (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) \]
\[\alpha_{3} = (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 3) \]
\[\alpha_{4} = (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3) \]
\[\alpha_{5} = (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) \]
თანამედროვე გამოკვეთა

<table>
<thead>
<tr>
<th>კლასები (B<sub>1</sub>)</th>
<th>აგენსი (D)</th>
<th>V(X<sup>*</sup>, α)</th>
<th>V(D, α)</th>
<th>კონსტანტო- სიართი კლასები (B<sub>1</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α₁ =</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>{a}</td>
<td>{a}</td>
</tr>
<tr>
<td>α₂ =</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>-</td>
<td>{a, b}</td>
</tr>
<tr>
<td>α₃ =</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>{a, c}</td>
</tr>
<tr>
<td>α₄ =</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>-</td>
<td>{a, d, k}</td>
</tr>
<tr>
<td>α₅ =</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>{a, k}</td>
</tr>
<tr>
<td>α₆ =</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>{a, b}</td>
</tr>
<tr>
<td>α₇ =</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>{a, b}</td>
</tr>
<tr>
<td>α₈ =</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>{a, b, c, k}</td>
</tr>
<tr>
<td>α₉ =</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>-</td>
<td>{a, b, d, k}</td>
</tr>
<tr>
<td>α₁₀ =</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>{a, b, k}</td>
</tr>
<tr>
<td>α₁₁ =</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>-</td>
<td>{a, c}</td>
</tr>
<tr>
<td>α₁₂ =</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>-</td>
<td>{a, b, c, k}</td>
</tr>
<tr>
<td>α₁₃ =</td>
<td>1 0 0</td>
<td>1 0 0</td>
<td>{a, c}</td>
<td>{a, c}</td>
</tr>
<tr>
<td>(\alpha_{14} = \begin{pmatrix} 1 & 0 & 0 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{a, d, c, k}</td>
<td>{a, c, k}</td>
<td>-</td>
</tr>
<tr>
<td>(\alpha_{15} = \begin{pmatrix} 1 & 0 & 0 \ 1 & 0 & 1 \ 1 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{a, c, k}</td>
<td>{a, c, k}</td>
<td>\begin{pmatrix} 1 & 0 & 0 \ 1 & 0 & 1 \ 1 & 1 & 1 \end{pmatrix}</td>
</tr>
<tr>
<td>(\alpha_{16} = \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{a, d, k}</td>
<td>{a, k}</td>
<td>-</td>
</tr>
<tr>
<td>(\alpha_{17} = \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 1 & 1 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{a, b, d, k}</td>
<td>{a, b, k}</td>
<td>-</td>
</tr>
<tr>
<td>(\alpha_{18} = \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 1 & 0 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{a, c, d, k}</td>
<td>{a, c, k}</td>
<td>-</td>
</tr>
<tr>
<td>(\alpha_{19} = \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix})</td>
<td>\begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix}</td>
<td>{a, d, k}</td>
<td>{a, d, k}</td>
<td>\begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix}</td>
</tr>
<tr>
<td>(\alpha_{20} = \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{a, d, k}</td>
<td>{a, k}</td>
<td>-</td>
</tr>
<tr>
<td>(\alpha_{21} = \begin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix})</td>
<td>\begin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix}</td>
<td>{a, k}</td>
<td>{a, k}</td>
<td>\begin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix}</td>
</tr>
<tr>
<td>(\alpha_{22} = \begin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 1 \ 1 & 1 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{a, b, k}</td>
<td>{a, b, k}</td>
<td>\begin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 1 \ 1 & 1 & 0 \end{pmatrix}</td>
</tr>
<tr>
<td>(\alpha_{23} = \begin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 1 \ 1 & 0 & 1 \end{pmatrix})</td>
<td>\begin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 1 \ 1 & 0 & 1 \end{pmatrix}</td>
<td>{a, k, c}</td>
<td>{a, k, c}</td>
<td>\begin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 1 \ 1 & 0 & 1 \end{pmatrix}</td>
</tr>
<tr>
<td>(\alpha_{24} = \begin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{a, d, k}</td>
<td>{a, k}</td>
<td>-</td>
</tr>
<tr>
<td>(\alpha_{25} = \begin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix})</td>
<td>\begin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix}</td>
<td>{a, k}</td>
<td>{a, k}</td>
<td>\begin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix}</td>
</tr>
<tr>
<td>(\alpha_{26} = \begin{pmatrix} 1 & 1 & 0 \ 1 & 0 & 0 \ 1 & 0 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{a, b}</td>
<td>{a, b}</td>
<td>\begin{pmatrix} 1 & 1 & 0 \ 1 & 0 & 0 \ 1 & 0 & 0 \end{pmatrix}</td>
</tr>
<tr>
<td>(\alpha_{27} = \begin{pmatrix} 1 & 1 & 0 \ 1 & 0 & 0 \ 1 & 1 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{a, b}</td>
<td>{b}</td>
<td>-</td>
</tr>
<tr>
<td>(\alpha_{28} = \begin{pmatrix} 1 & 1 & 0 \ 1 & 0 & 0 \ 1 & 0 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{b, a, c, k}</td>
<td>{b, c, k}</td>
<td>-</td>
</tr>
<tr>
<td>α_{29}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 0 & 0 \ 0 & 1 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${a, b, d, k}$</td>
<td>${b, k}$</td>
</tr>
<tr>
<td>α_{30}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 0 & 0 \ 1 & 1 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${a, b, k}$</td>
<td>${b, k}$</td>
</tr>
<tr>
<td>α_{31}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 0 \ 1 & 0 & 0 \end{pmatrix}$</td>
<td>$-$</td>
<td>${a, b}$</td>
<td>${b}$</td>
</tr>
<tr>
<td>α_{32}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 0 \ 1 & 1 & 0 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 0 \end{pmatrix}$</td>
<td>${b}$</td>
<td>${b}$</td>
</tr>
<tr>
<td>α_{33}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 0 \ 1 & 0 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${b, c, k}$</td>
<td>${b, k}$</td>
</tr>
<tr>
<td>α_{34}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 0 \ 0 & 1 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${b, d, k}$</td>
<td>${b, k}$</td>
</tr>
<tr>
<td>α_{35}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 0 \ 1 & 1 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 1 \end{pmatrix}$</td>
<td>${b, k}$</td>
<td>${b, k}$</td>
</tr>
<tr>
<td>α_{36}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 0 & 1 \ 1 & 0 & 0 \end{pmatrix}$</td>
<td>$-$</td>
<td>${a, b, c, k}$</td>
<td>${b, c, k}$</td>
</tr>
<tr>
<td>α_{37}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{pmatrix}$</td>
<td>$-$</td>
<td>${b, c, k}$</td>
<td>${b, k}$</td>
</tr>
<tr>
<td>α_{38}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 0 & 1 \ 1 & 0 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${b, c, k}$</td>
<td>${b, c, k}$</td>
</tr>
<tr>
<td>α_{39}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${b, c, d, k}$</td>
<td>${b, k}$</td>
</tr>
<tr>
<td>α_{40}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 1 & 0 & 1 \ 1 & 1 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${b, c, k}$</td>
<td>${b, k}$</td>
</tr>
<tr>
<td>α_{41}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix}$</td>
<td>$-$</td>
<td>${b, d, a, k}$</td>
<td>${b, k}$</td>
</tr>
<tr>
<td>α_{42}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 1 & 1 & 0 \end{pmatrix}$</td>
<td>$-$</td>
<td>${b, d, k}$</td>
<td>${b, k}$</td>
</tr>
<tr>
<td>α_{43}</td>
<td>$\begin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 1 & 0 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${b, d, c, k}$</td>
<td>${b, k}$</td>
</tr>
<tr>
<td>(\alpha_{44})</td>
<td>(\begin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{b, d, k}</td>
<td>{b, d, k}</td>
</tr>
<tr>
<td>(\alpha_{45})</td>
<td>(\begin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{b, d, k}</td>
<td>{b, k}</td>
</tr>
<tr>
<td>(\alpha_{46})</td>
<td>(\begin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{b, a, k}</td>
<td>{b, k}</td>
</tr>
<tr>
<td>(\alpha_{47})</td>
<td>(\begin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 1 \ 1 & 1 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{b, k}</td>
<td>{b, k}</td>
</tr>
<tr>
<td>(\alpha_{48})</td>
<td>(\begin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 1 \ 1 & 0 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{b, c, k}</td>
<td>{b, k}</td>
</tr>
<tr>
<td>(\alpha_{49})</td>
<td>(\begin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{b, d, k}</td>
<td>{b, k}</td>
</tr>
<tr>
<td>(\alpha_{50})</td>
<td>(\begin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{b, k}</td>
<td>{b, k}</td>
</tr>
<tr>
<td>(\alpha_{51})</td>
<td>(\begin{pmatrix} 1 & 0 & 1 \ 1 & 0 & 0 \ 1 & 0 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{c, a}</td>
<td>{c, a}</td>
</tr>
<tr>
<td>(\alpha_{52})</td>
<td>(\begin{pmatrix} 1 & 0 & 1 \ 1 & 0 & 0 \ 1 & 1 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{c, a, b, k}</td>
<td>{b, c, k}</td>
</tr>
<tr>
<td>(\alpha_{53})</td>
<td>(\begin{pmatrix} 1 & 0 & 1 \ 1 & 0 & 0 \ 1 & 0 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{c, a}</td>
<td>{c}</td>
</tr>
<tr>
<td>(\alpha_{54})</td>
<td>(\begin{pmatrix} 1 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{c, a, d, k}</td>
<td>{c, k}</td>
</tr>
<tr>
<td>(\alpha_{55})</td>
<td>(\begin{pmatrix} 1 & 0 & 1 \ 1 & 0 & 0 \ 1 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{c, a, k}</td>
<td>{c, k}</td>
</tr>
<tr>
<td>(\alpha_{56})</td>
<td>(\begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 0 \ 1 & 0 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{b, c, a, k}</td>
<td>{c, b, k}</td>
</tr>
<tr>
<td>(\alpha_{57})</td>
<td>(\begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 0 \ 1 & 1 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{c, b, k}</td>
<td>{c, b, k}</td>
</tr>
<tr>
<td>(\alpha_{58})</td>
<td>(\begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 0 \ 1 & 0 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{c, b, k}</td>
<td>{c, k}</td>
</tr>
<tr>
<td>α_{59}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 0 \ 0 & 1 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${c, b, d, k}$</td>
<td>${c, k}$</td>
</tr>
<tr>
<td>α_{60}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 0 \ 1 & 1 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${c, b, k}$</td>
<td>${c, k}$</td>
</tr>
<tr>
<td>α_{61}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 1 & 0 & 1 \ 1 & 0 & 0 \end{pmatrix}$</td>
<td>$-$</td>
<td>${c, a}$</td>
<td>${c}$</td>
</tr>
<tr>
<td>α_{62}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{pmatrix}$</td>
<td>$-$</td>
<td>${c, b, k}$</td>
<td>${c, k}$</td>
</tr>
<tr>
<td>α_{63}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 1 & 0 & 1 \ 1 & 0 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 1 & 0 & 1 \ 1 & 0 & 1 \end{pmatrix}$</td>
<td>${c}$</td>
<td>${c}$</td>
</tr>
<tr>
<td>α_{64}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${c, d, k}$</td>
<td>${c, k}$</td>
</tr>
<tr>
<td>α_{65}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 1 & 0 & 1 \ 1 & 1 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${c, k}$</td>
<td>${c, k}$</td>
</tr>
<tr>
<td>α_{66}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix}$</td>
<td>$-$</td>
<td>${d, c, a, k}$</td>
<td>${c, k}$</td>
</tr>
<tr>
<td>α_{67}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 1 \ 1 & 1 & 0 \end{pmatrix}$</td>
<td>$-$</td>
<td>${c, d, b, k}$</td>
<td>${c, k}$</td>
</tr>
<tr>
<td>α_{68}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 1 \ 1 & 0 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${c, d, k}$</td>
<td>${c, k}$</td>
</tr>
<tr>
<td>α_{69}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${c, d, k}$</td>
<td>${c, d, k}$</td>
</tr>
<tr>
<td>α_{70}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix}$</td>
<td>$-$</td>
<td>${c, d, k}$</td>
<td>${c, k}$</td>
</tr>
<tr>
<td>α_{71}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix}$</td>
<td>$-$</td>
<td>${c, a, k}$</td>
<td>${c, k}$</td>
</tr>
<tr>
<td>α_{72}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 1 \ 1 & 1 & 0 \end{pmatrix}$</td>
<td>$-$</td>
<td>${c, b, k}$</td>
<td>${c, k}$</td>
</tr>
<tr>
<td>α_{73}</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 1 \ 1 & 0 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 1 \ 1 & 0 & 1 \end{pmatrix}$</td>
<td>${c, k}$</td>
<td>${c, k}$</td>
</tr>
<tr>
<td>α_{74}</td>
<td>(\begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{c, d, k}</td>
<td>{c, k}</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>---</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>α_{75}</td>
<td>(\begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{c, k}</td>
<td>{c, k}</td>
</tr>
<tr>
<td>α_{76}</td>
<td>(\begin{pmatrix} 0 & 1 & 1 \ 1 & 0 & 0 \ 1 & 0 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{a, d, k}</td>
<td>{a, d, k}</td>
</tr>
<tr>
<td>α_{77}</td>
<td>(\begin{pmatrix} 0 & 1 & 1 \ 1 & 0 & 0 \ 1 & 1 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{a, b, d, k}</td>
<td>{b, d, k}</td>
</tr>
<tr>
<td>α_{78}</td>
<td>(\begin{pmatrix} 0 & 1 & 1 \ 1 & 0 & 0 \ 1 & 0 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{a, c, d, k}</td>
<td>{c, d, k}</td>
</tr>
<tr>
<td>α_{79}</td>
<td>(\begin{pmatrix} 0 & 1 & 1 \ 1 & 0 & 0 \ 0 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{a, d, k}</td>
<td>{d, k}</td>
</tr>
<tr>
<td>α_{80}</td>
<td>(\begin{pmatrix} 0 & 1 & 1 \ 1 & 0 & 0 \ 1 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{a, d, k}</td>
<td>{d, k}</td>
</tr>
<tr>
<td>α_{81}</td>
<td>(\begin{pmatrix} 0 & 1 & 1 \ 1 & 1 & 0 \ 1 & 0 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{a, b, d, k}</td>
<td>{b, d, k}</td>
</tr>
<tr>
<td>α_{82}</td>
<td>(\begin{pmatrix} 0 & 1 & 1 \ 1 & 1 & 0 \ 1 & 1 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{b, d, k}</td>
<td>{b, d, k}</td>
</tr>
<tr>
<td>α_{83}</td>
<td>(\begin{pmatrix} 0 & 1 & 1 \ 1 & 1 & 0 \ 1 & 0 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{b, c, d, k}</td>
<td>{d, k}</td>
</tr>
<tr>
<td>α_{84}</td>
<td>(\begin{pmatrix} 0 & 1 & 1 \ 1 & 1 & 0 \ 0 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{b, d, k}</td>
<td>{d, k}</td>
</tr>
<tr>
<td>α_{85}</td>
<td>(\begin{pmatrix} 0 & 1 & 1 \ 1 & 1 & 0 \ 1 & 1 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{b, d, k}</td>
<td>{d, k}</td>
</tr>
<tr>
<td>α_{86}</td>
<td>(\begin{pmatrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 0 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{a, c, d, k}</td>
<td>{c, d, k}</td>
</tr>
<tr>
<td>α_{87}</td>
<td>(\begin{pmatrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{pmatrix})</td>
<td>-</td>
<td>{b, c, d, k}</td>
<td>{d, k}</td>
</tr>
<tr>
<td>α_{88}</td>
<td>(\begin{pmatrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 0 & 1 \end{pmatrix})</td>
<td>-</td>
<td>{c, d, k}</td>
<td>{c, d, k}</td>
</tr>
<tr>
<td>α_{99}</td>
<td>α_{90}</td>
<td>α_{91}</td>
<td>α_{92}</td>
<td>α_{93}</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>$\begin{pmatrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 0 & 1 & 1 \ 0 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 0 & 1 & 1 \ 0 & 1 & 1 \ 1 & 1 & 0 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 0 & 1 & 1 \ 0 & 1 & 1 \ 1 & 0 & 1 \end{pmatrix}$</td>
</tr>
<tr>
<td>${c, d, k}$</td>
<td>${c, d, k}$</td>
<td>${a, d, k}$</td>
<td>${b, d, k}$</td>
<td>${c, d, k}$</td>
</tr>
<tr>
<td>${d, k}$</td>
<td>${d, k}$</td>
<td>${d, k}$</td>
<td>${d, k}$</td>
<td>${d, k}$</td>
</tr>
</tbody>
</table>
| α_{i04} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{pmatrix}
| - | \{a, d, k\} | \{k\} | - |
| α_{i05} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{pmatrix}
| - | \{a, k\} | \{k\} | - |
| α_{i06} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}
| - | \{a, b, k\} | \{b, k\} | - |
| α_{i07} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{pmatrix}
| - | \{b, k\} | \{b, k\} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{pmatrix}
|
| α_{i08} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix}
| - | \{b, c, k\} | \{k\} | - |
| α_{i09} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{pmatrix}
| - | \{b, d, k\} | \{k\} | - |
| α_{i10} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{pmatrix}
| - | \{b, k\} | \{k\} | - |
| α_{i11} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}
| - | \{a, c, k\} | \{c, k\} | - |
| α_{i12} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}
| - | \{b, c, k\} | \{k\} | - |
| α_{i13} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{pmatrix}
| - | \{c, k\} | \{c, k\} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{pmatrix}
|
| α_{i14} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
| - | \{c, d, k\} | \{k\} | - |
| α_{i15} | \[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{pmatrix}
| - | \{c, k\} | \{k\} | - |
| α_{i16} | \[
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{pmatrix}
| - | \{a, d, k\} | \{k\} | - |
| α_{i17} | \[
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{pmatrix}
| - | \{c, d, k\} | \{k\} | - |
| α_{i18} | \[
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{pmatrix}
<p>| - | {c, d, k} | {k} | - |</p>
<table>
<thead>
<tr>
<th>α_{119}</th>
<th>$\begin{pmatrix} 1 & 1 & 1 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix}$</th>
<th>$\begin{pmatrix} 1 & 1 & 1 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix}$</th>
<th>{d, k}</th>
<th>{d, k}</th>
<th>$\begin{pmatrix} 1 & 1 & 1 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{120}</td>
<td>$\begin{pmatrix} 1 & 1 & 1 \ 0 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix}$</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>α_{121}</td>
<td>$\begin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 0 & 0 \end{pmatrix}$</td>
<td>_</td>
<td>{a, k}</td>
<td>{k}</td>
<td>_</td>
</tr>
<tr>
<td>α_{122}</td>
<td>$\begin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 0 \end{pmatrix}$</td>
<td>_</td>
<td>{b, k}</td>
<td>{k}</td>
<td>_</td>
</tr>
<tr>
<td>α_{123}</td>
<td>$\begin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 0 & 1 \end{pmatrix}$</td>
<td>_</td>
<td>{c, k}</td>
<td>{k}</td>
<td>_</td>
</tr>
<tr>
<td>α_{124}</td>
<td>$\begin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix}$</td>
<td>_</td>
<td>{d, k}</td>
<td>{k}</td>
<td>_</td>
</tr>
<tr>
<td>α_{125}</td>
<td>$\begin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix}$</td>
<td>{k}</td>
<td>{k}</td>
<td>$\begin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix}$</td>
</tr>
<tr>
<td>λ</td>
<td>19</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>37</td>
</tr>
</tbody>
</table>
$B_r(D)$ ბაზარის ფაქტორის სიმბოლოური წარსულზე (VBA-ში)
$X = \{1, 2, 3\}, \ D = \{\{1\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Sub Keli()
Dim i As Integer, j As Integer, k As Integer
Dim alfa(125) As Integer, M(125, 125) As Integer
'ლარჯი საძირკვლის პროცესი
For i = 1 To 5
 For j = 1 To 5
 For k = 1 To 5
 Count = Count + 1
 alfa(Count) = Str(i) & Str(j) & Str(k)
 Next k
 Next j
Next i
'ლარჯი სამიქნეობის პროცესი
For i = 1 To 125
 For j = 1 To 125
 c = MatGamravleba(alfa(i), alfa(j))
 For k = 1 To 125
 If c = alfa(k) Then
 M(i, j) = k
 Exit For
 End If
 Next k
 Next j
Next i
'მოქმედობა მეთოდურა
For i = 1 To 125
 For j = 1 To 125
 Range("a1").Activate
 ActiveCell(i, j) = M(i, j)
 Next j
Next i
End Sub

Function MatGamravleba(a As Integer, b As Integer) 'შემოფესკვნის გამოქვაბული
Dim Amat(4, 4) As Integer, Bmat(4, 4) As Integer, Cmat(4, 4) As Integer
Dim tempc(3) As String
Dim i As Integer, j As Integer, k As Integer, n As Integer, temp As Integer
Dim c As String, d(5) As String * 3
d(1) = "100"
d(2) = "110"
d(3) = "101"
d(4) = "011"
d(5) = "111"
'A ձառագետի ծայրեր
For i = 1 To 3
 k1 = Val(Mid(Trim(Str(a)), i, 1))
 For j = 1 To 3
 Amat(i, j) = Val(Mid(d(k1), j, 1))
 Next j
Next i
'B ձառագետի ծայրեր
For i = 1 To 3
 k1 = Val(Mid(Trim(Str(b)), i, 1))
 For j = 1 To 3
 Bmat(i, j) = Val(Mid(d(k1), j, 1))
 Next j
Next i
'A և B ձառագետների աղյուսահատոր
For i = 1 To 3
 For j = 1 To 3
 temp = 0
 For k = 1 To 3
 temp = temp + Amat(i, k) * Bmat(k, j)
 Next k
 If temp > 1 Then Cmat(i, j) = 1 Else Cmat(i, j) = temp
 Next j
Next i
For i = 1 To 3
 tempc(i) = ""
 For j = 1 To 3
 tempc(i) = tempc(i) & Cmat(i, j)
 Next j
Next i
c = ""
For k = 1 To 3
 For j = 1 To 5
 If tempc(k) = d(j) Then c = c & j
 Next j
Next k
MatGamravleba = Val(c)
End Function
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

105
<p>| 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 |
|-----|
| 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 |
| 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 |
| 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 |
| 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 |
| 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 |
| 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 |
| 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 |
| 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 |
| 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 |
| 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 |
| 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 |
| 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 |
| 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 |
| 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 |
| 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 |
| 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 |
| 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 |
| 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 | 74 | 124 |
| 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 | 75 | 125 |</p>
<table>
<thead>
<tr>
<th>(v)</th>
<th>(a_1)</th>
<th>(a_3)</th>
<th>(a_5)</th>
<th>(a_6)</th>
<th>(a_7)</th>
<th>(a_8)</th>
<th>(a_{10})</th>
<th>(a_{13})</th>
<th>(a_{19})</th>
<th>(a_{21})</th>
<th>(a_{23})</th>
<th>(a_{25})</th>
<th>(a_{32})</th>
<th>(a_{35})</th>
<th>(a_{63})</th>
<th>(a_{73})</th>
<th>(a_{94})</th>
<th>(a_{119})</th>
<th>(a_{125})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>(a_{32})</td>
<td>(a_{32})</td>
<td>(a_{32})</td>
<td>(a_{32})</td>
<td>(a_{32})</td>
<td>(a_{32})</td>
</tr>
<tr>
<td>(a_3)</td>
<td>(a_1)</td>
<td>(a_3)</td>
<td>(a_5)</td>
<td>(a_1)</td>
<td>(a_3)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_1)</td>
<td>(a_3)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_{21})</td>
<td>(a_{21})</td>
<td>(a_{21})</td>
<td>(a_{21})</td>
<td>(a_{21})</td>
<td>(a_{21})</td>
</tr>
<tr>
<td>(a_5)</td>
<td>(a_1)</td>
<td>(a_3)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_{13})</td>
<td>(a_{25})</td>
<td>(a_{25})</td>
<td>(a_{25})</td>
<td>(a_{25})</td>
<td>(a_{25})</td>
<td>(a_{25})</td>
<td>(a_{25})</td>
</tr>
<tr>
<td>(a_{10})</td>
<td>(a_1)</td>
<td>(a_3)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_5)</td>
<td>(a_{10})</td>
<td>(a_{13})</td>
<td>(a_{25})</td>
<td>(a_{25})</td>
<td>(a_{25})</td>
<td>(a_{25})</td>
<td>(a_{25})</td>
<td>(a_{25})</td>
</tr>
<tr>
<td>(a_{13})</td>
<td>(a_1)</td>
<td>(a_3)</td>
<td>(a_{25})</td>
<td>(a_{1})</td>
</tr>
<tr>
<td>(a_{19})</td>
<td>(a_1)</td>
<td>(a_3)</td>
<td>(a_{25})</td>
<td>(a_{7})</td>
<td>(a_{1})</td>
</tr>
<tr>
<td>(a_{21})</td>
<td>(a_1)</td>
<td>(a_{21})</td>
<td>(a_{1})</td>
</tr>
<tr>
<td>(a_{23})</td>
<td>(a_1)</td>
<td>(a_{23})</td>
<td>(a_{1})</td>
</tr>
<tr>
<td>(a_{35})</td>
<td>(a_1)</td>
<td>(a_{35})</td>
<td>(a_{1})</td>
</tr>
<tr>
<td>(a_{32})</td>
<td>(a_1)</td>
<td>(a_{32})</td>
<td>(a_{1})</td>
</tr>
<tr>
<td>(a_{125})</td>
<td>(a_1)</td>
<td>(a_{125})</td>
<td>(a_{1})</td>
</tr>
<tr>
<td>(a_{125})</td>
<td>(a_1)</td>
<td>(a_{125})</td>
<td>(a_{1})</td>
</tr>
</tbody>
</table>

123
ЛИТЕРАТУРА

1. Семиододом й. $\Sigma_i(X,5)$ классов дискретных групп в пространстве \mathbb{R}^n и их применения. Математика, Москва, 2001, 4.

10. Вагнер В. В. Теория отношений и алгебра частичных отображений. Теория полугрупп и ее приложения. Сарат. ун-т, 1, 1965, 3-178.

13. Девадзе X. M. Порождающие множества полугрупп всех бинарных отношений в конечном множестве. Докл. АН. БССР. 12, 9, 1968, 765-768.

17. Диасамидзе Я. И. Об идеомпонентных бинарных отношенияях. ХІІ Всесоюзный алгебраический коллок., Свердловск, 1973, тетр. ІІ.

18. Диасамидзе Я. И. Некоторые полугруппы, порожденные идеомпонентными бинарными отношениями. В сб. Соврем. Алгебра, 3, Л., 1975, 36-51.

19. Диасамидзе Я. И. Всесоюзный алгебраический симпозиум. Гомель, 1975, часть І.

20. Диасамидзе Я. И. О полугруппе бинарных отношений. Л., в сб. XXIX Герценовск. Чтения, Математика, 1976, 5-8.

21. Диасамидзе Я. И. Отношение Грена на полугруппе, порожденное всеми почти диагональными идеомпонентными отношениями, Л., в сб. Соврем. Алгебра, 4, 1976, 57-65.

22. Диасамидзе Я. И. Описание всех минимальных левых (правых) идеомпонентных делителей почти диагональных отношений. Л., в сб. Соврем. Алгебра, 5, 1976, 40-46.

23. Диасамидзе Я. И. О некоторых подполугруппах из B_x. ІХ конф. матем. высших учебных заведений ГССР, Батуми, 1981.

25. Диасамидзе Я. И. О приводимых и неприводимых бинарных отношениях. Х конф. матем. высших учебных заведений ГССР, Телави, 1983.

26. Диасамидзе Я. И. Абстрактная характеристика полугрупп $\Delta^{(r)}_x(\alpha)$. XI конф. матем. высших учебных заведений ГССР, Кутаиси 1986.

27. Диасамидзе Я. И. Делимость, отношения Грена и регулярные элементы в полугруппах $B^{(r)}_x(\alpha)$. XI конф. матем. высших учебных заведений ГССР, Кутаиси 1986.

28. Диасамидзе Я. И. О максимальных подмоноидах и максимальных подгруппах полугрупп $B^{(r)}_x(\alpha)$. XI конф. матем. высших учебных заведений ГССР, Кутаиси 1986.

32. Диасамидзе Я. И., Махарадзе Ш. И. Неприводимые порождающие множества некоторых идеомпонентно порожденных подполугрупп полугруппы всех бинарных отношений. Батуми, 1996.
33. Диасамидзе Я. И., Махарадзе Ш. И. Правые нули полных полугрупп бинарных отношений. Батуми, Труды Батумского гос. ун-та им. Ш. Руставели, 2, 1998, 39-42.
43. Зарецкий К. А. Абстрактная характеристика полугрупп всех бинарных отношений. Л., Уч. зап. ЛГПИ им. А.И.Герцена. 183, 1958, 251-263.
44. Зарецкий К. А. Абстрактная характеристика полугрупп всех рефлексивных бинарных отношений. Л., Уч. зап. ЛГПИ им. А.И.Герцена, 1958, 265-269.
45. Зарецкий К. А. Регулярные элементы полугруппы бинарных отношений. Успехи матем. Наук, 17, 3, 1962, 177-179.
46. Зарецкий К. А., Представление упорядоченных полугрупп бинарными отношениями. Изв. высш. учеб. заведений. Математика, 6, 1959, 48-50.
48. Зарецкий К. А. Полугруппа вполне эффективных бинарных отношений. Сарат. ун-т., в сб. Теория полугрупп и ее приложения, 1, 1965, 238-250.
49. Зарецкий К. А. Об идеалах полугрупп. Успехи матем. Наук, 14, 6, 1959, 173-174.
50. Зарецкий К. А. Абстрактная характеристика класса полугрупп частично рефлексивных бинарных отношений. Сибирский матем. ж., 8, 6, 1967.

56. Зарецкий К.А. О частичных конгруэнциях на полугруппе бинарных отношений. Саратов. Ун-т., Теория полугрупп и ее прил., 7, 1984, 16-23.

57. Зарецкий К. А. Решетки срезов бинарных отношений. Саратов. Ун-т., Упорядоч. множества и решетки, 9, 1986, 24-33.

58. Клиффорд А., Престон Г. Алгебраическая теория полугрупп. М., Мир, 1972.

72. Махарадзе Ш. И. Делимость, отношения Грона и регулярные элементы полугруппы $\theta_X^{(k)}(\alpha)$. Батуми, гос. ун-т., 1997, 1-23.
75. Махарадзе Ш. И. Максимальные идемпотентные полугруппы из $\theta^*(\omega_{x,y})$. Батуми, Труды Батумского гос. ун-та им. Ш. Руставели, 2, 1998, 33-38.
76. Махарадзе Ш. И. Полугруппы бинарных отношений с правыми единицами. Батуми. Изд. Аджара. 2001.
86. Шайн Б.М. Представление полугрупп при помощи бинарных отношений. Докл. АН СССР, 142, 4, 1962, 808-811.
89. Шайн Б. М. Инволютированные полугруппы полных бинарных отношений. Докл. АН СССР, 156, 6, 1964, 1300-1303.
90. Шайн Б. М. О некоторых классах полугрупп бинарных отношений. Сибирск. матем. ж., 6, 3, 1965, 616-635.
93. Шайн Б. М. Рестриктивные биполугруппы квазиоднозначных бинарных отношений. Изв. высш. учебн. заведений, Математика, 5, 84, 1969, 73-84.