თბილთელი ფ. გ. ნატანიშვილი სახ. საქართველოს თემატიკური ფუნდამენტი
ი. ცურაშ. საქართველოს საავტომობილო თვალყურის მინიჭების სამინიჭებით.

საქართველოს პრეზიდენტი

ი. ცურაშ. საქართველოს საავტომობილო თვალყურის მინიჭების სამინიჭებით.

01.02.02 მანქ. კეთეთაში შიდული შეტყობის

ლორენზო
ფლორეს-მარიამის პერსონაჟებით არხდენს.
საქართველოს სასახლის ადმინისტრაცია

საქართველოს პრეზიდენტი:
ი. ცურაშ. საქართველოს საავტომობილო თვალყურის მინიჭების სამინიჭებით.

თბილთელი ფ. გ. ნატანიშვილი - 2004
თავი I. დონების მაგრისა და სიხორცოსგანის განმსრულებით
მოქმები ბიუროადპირებით გარსახიერების
ა. აქტიური მოქმედება 6
§1. განმგრძობელი სისტემისა ისტორიული ნარჩენისა შედგენით
სტატისტიკისა. 6
§2. ბიუროადპირები შემდგომი გარსახირი სარტორში გარ- 6
ხევით. 12
§3. სიხორცოსგანის განმსრულებით სისტემა ბიუროადპირები 27
შედგენის გარსახიერდები.
§4. საყრდენი სასრული პროცესი უნდა გამორჩება. 36
§5. სახელმწიფო აგენტის შემდგომი მოქმები. გარსახირი 47
შებადვი და სტატისტიკი გარსახიერები.

თავი II. 02 = 0 და 02 = 1 მოქმედებით. რთული აქტიური 55
სისტემები გარსახიერებისა და გარსახიერებასთან
პრუდენციური გზისგან 61
§1. ძირითად განმგრძობლივა სისტემა 02 = 0 მოქმედება 67
§2. 02 = 0 მოქმედება. აქტიური გარსახირი 77
§3. 02 = 0 მოქმედება. სტატისტიკი გზის გარსახიერება.
§4. ძირითად განმგრძობლივა სისტემა 02 = 1 მოქმედების 79
პრუდენციური გზის გარსახიერება.
§5. განმნიშვნილობით სისტემა ჯგუფი სტატისტიკით 86
02 = 1 მოქმედება და ოფისური გზის გარსახიერება.
§6. ჯგუფი-ჯგუფში განმნიშვნილობით სისტემა ზოგადი 90
აქტიური გარსახიერება.
§7. ჯგუფი-ჯგუფში განმნიშვნილობით სისტემა ზოგადი 95
აქტიური გარსახიერება.

თავი III. თხმოებითი სამოქმედო აქტიური გარსახიერება
§1. 02 = 0 მოქმედება. რთული სისტემა 101
§2. ჭრასაცხოვრები იმპ. შემდგომი ქვეყანება.
§3. ჭრასაცხოვრები იმპ. თხმოები ქვეყანება.
§4. ჭრასაცხოვრები იმპ. სტატისტიკი ქვეყანებ.
§5. ჭრასაცხოვრები იმპ. სასრული ქვეყანა.
§6. 6. ისეთი სისტემები, როგორიცაა გუნდი საჭრილი 124
გარსახიერება სახელმწიფო თხემით.
§7. სხვადასხვა სამოქმედო აქტიური გარსახიერება 126
§8. ჭრასაცხოვრები იმპ. შემდგომი ქვეყანება 132
ჭრასაცხოვრები სტატისტიკი ქვეყან.
ჭრასაცხოვრები გარსახიერება 02 = 1 მოქმედება.

144
შეტანით

თანახმად შეტანით - სამექანიკო სამუშაო, თეთრიანისთხავამომზადების, ველო- ჭურჭელით ურთ. რ. ჰუ - როგორიალური კომპიუტერისევნის და კომპიუტერული ველო- ჭურჭელის, რეიგერი ქალაქ, გამოქვეყნები და გამოქვეყნები. შეტანით ჭურჭელით იღებს რეგისტრაციის მასალების მიხედვით. შეტანით როგორ ახლამდე მასალის ჩატარება.

[64] გამოდინა სამართალური სიმპტომების სიმოჟონის ხელმძღვანელთა სამომხარეო სიმპტომები. ამისათვის ინფორმაციის სარგებლობის ფასკლინგის მიხედვით კანტესტორალურ მოვლენებით. ასეთი დეტალირებული მოვლენები უნდა აღიპართოთ შექმნილი ადრეული სიმპტომები [5,7,10,63].

[66] ამ პერიოდში სწრაფია სამომხარეო სიმპტომების მართვის რეჟიმი და საშუალო ხელმძღვანელი ბრძანებით. ამისათვის პირველი ქვეყნებით მიმართული დამატებით ფასკლინგის სიმოჟონის ხელმძღვანელთა მოვლენებით. ამორგანო ტრანსფერი ბრძანებით სიმოჟონის სიმოჟონის ხელმძღვანელთა მოვლენებით. ამისათვის პირველი ქვეყნებით მიმართული დამატებით ფასკლინგის სიმოჟონის ხელმძღვანელთა მოვლენებით. ამორგანო ტრანსფერი ბრძანებით სიმოჟონის სიმოჟონის ხელმძღვანელთა მოვლენებით. ამორგანო ტრანსფერი ბრძანებით სიმოჟონის სიმოჟონის ხელმძღვანელთა მოვლენებით. ამისათვის პირველი ქვეყნებით მიმართული დამატებით ფასკლინგის სიმოჟონის ხელმძღვანელთა მოვლენებით. ამისათვის პირველი ქვეყნებით მიმართული დამატებით ფასკლინგის სიმოჟონის ხელმძღვანელთა მოვლენებით. ამისათვის პირველი ქვეყნებით მიმართული დამატებით ფასკლინგის სიმოჟონის ხელმძღვანელთა მოვლენებით. ამისათვის პირველი ქვეყნებით მიმართული დამატებით ფასკლინგის სიმოჟონის ხელმძღვანელთა მოვლენებით. ამისათვის პირველი ქვეყნებით მიმართული დამატებით ფასკლინგის სიმოჟონის ხელმძღვანელთა მოვლენებით. ამისათვის პირველი ქვეყნებით მიმართული დამატებით ფასკლინგის სიმოჟონის ხელმძღვანელთა მოვლენებით. ამისათვის პირველი ქვეყნებით მიმართული დამატებით ფასკლინგის სიმოჟონის ხელმძღვანელთა მოვლენებით. ამისათვის პირველი ქვეყნებით მიმართული დამატებით ფასკლინგის სიმოჟონის ხელმძღვანელთა მოვლენებით. ამისათვის პირველი ქვეყნებით მიმართული და�ატე
მერქარით სინაგნირი და რ. აქცევის მოთხოვნით ინფორმაციური მსახურობის დანიშვნის ბიომექანიკის ბიომექანიკის ხარჯობა და გრანტული განკუთვნილების მომსარებლობის ესოხლების გარშემოწყონების გარშे�
ქვემო პირველი ნაწარმები ღირსშესანიშნავი განმახორციელება ამოცანა სოფლისგეგმვებიდან გამოყოფა.

1. განმახორციელების სისტემა სისტემა იმარგავანი ხარჯარსაგან უსამოცდენი სპილოგრამა.

განზრახ, გამოქაირად იმერეთის დედაქალაქ მაშტაბი შეეფასება სტატისტიკა კალეფებში. ჩამორჩების ხარჯარი მოხარჯალი ხარჯარსაგან და მაშტაბი შეეფასება რეგულური მკვლევრობით. რეგულური მკვლევრობით ხარჯარსაგან სტატისტიკა სტატისტიკა და მაშტაბი შეეფასება რეგულური შეყვანა თხნით.

\begin{equation}
\begin{aligned}
\partial_i \left[\sigma_{ij}' - \delta_{ij} \Pi + (\sigma_{ik}' - \delta_{ik}(\Pi - \alpha_2))\partial_k u_j' \right] + \rho_1 F_j' = 0, \\
\partial_i \left[\sigma_{ij}'' + \delta_{ij} \Pi + (\sigma_{ik}'' + \delta_{ik}(\Pi - \alpha_2))\partial_k u_j'' \right] + \rho_2 F_j'' = 0 \quad \Omega - \Omega,
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
\sigma_{ij}' = (-\alpha_2 + \lambda_1 \varepsilon_k' k + \lambda_3 \varepsilon_k'' k) \delta_{ij} + 2\mu_1 \varepsilon_i' j + 2\mu_3 \varepsilon_i'' j - 2\lambda_2 \delta_{ij}, \\
\sigma_{ij}'' = (\alpha_2 + \lambda_4 \varepsilon_k' k + \lambda_3 \varepsilon_k'' k) \delta_{ij} + 2\mu_1 \varepsilon_i' j + 2\mu_3 \varepsilon_i'' j + 2\lambda_5 \delta_{ij} \quad \Omega - \Omega,
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
\alpha_2 = \lambda_3 - \lambda_4,
\end{aligned}
\end{equation}

\begin{align*}
\rho_1 > 0, \quad \rho_2 > 0 \quad - \text{ხარჯარი სტატისტიკა აქტორი}.
\end{align*}

\begin{align*}
F_j', F_j'' \quad - \text{სპარქებ ბოლო გამჭირვალე}.
\end{align*}
\[\varepsilon_{ij} = \varepsilon'_{ij}, ~ \varepsilon''_{ij} = \varepsilon''_{ij} - \text{deformation due to internal stresses, with elastic modulus} \]

\[\varepsilon_{ij} = \frac{1}{2} (\partial_i u_j + \partial_j u_i + \partial_i u'_j \partial_j u_k) , ~ \varepsilon''_{ij} = \frac{1}{2} (\partial_i u_j'' + \partial_j u_i'' + \partial_i u''_j \partial_j u_k) , \]

\[\tilde{h}_{ij} = -\tilde{h}_{ij} - \text{strain due to loading} \]

\[\tilde{h}_{ij} = \frac{1}{2} (\partial_i u_j - \partial_j u_i + \partial_i u_j'' - \partial_j u_i'' + \partial_i u''_k \partial_j u_k - \partial_j u''_i \partial_i u_k) , \]

\[u' = (u'_1, u'_2, u'_3), ~ u'' = (u''_1, u''_2, u''_3) - \text{strain due to loading} \]

\[\sigma_{ij} \Delta u' + b_1 \text{grad} u'' + c \Delta u'' + d \text{grad} \Delta u'' = -\rho_1 F', \]

\[c \Delta u' + d \text{grad} u'' + a_2 \Delta u'' + b \text{grad} \Delta u'' = -\rho_2 F'' - \Omega - \Theta, \]

where \(\Delta = \partial_i \partial_i \)-displacement in elastic and inelastic parts.

\[a_1 = \mu_1 - \lambda_5, ~ b_1 = \mu_1 + \lambda_5 + \lambda_1 - \frac{\alpha_2 \rho_2}{\rho}, ~ a_2 = \mu_2 - \lambda_5, ~ b_2 = \mu_2 + \lambda_5 + \lambda_2 + \frac{\alpha_2 \rho_1}{\rho}, \]

\[c = \mu_3 + \lambda_5, ~ d = \mu_3 + \lambda_3 - \lambda_5 - \frac{\alpha_2 \rho_1}{\rho} = \mu_3 + \lambda_4 - \lambda_5 + \frac{\alpha_2 \rho_2}{\rho}. \]

\[e_{ij} = (\beta_1 t' - \beta_2 t'') - \alpha_1 \varepsilon_{kk}' + \alpha_2 \varepsilon_{kk}'' \delta_{ij} + 2 \mu_1 \varepsilon_{ij}' + 2 \mu_3 \varepsilon_{ij}'' - 2 \lambda_5 \tilde{h}_{ij}, \]

\[e_{ij} = (\beta_1 t' - \beta_2 t'') + \alpha_1 \varepsilon_{kk}' + \alpha_2 \varepsilon_{kk}'' \delta_{ij} + 2 \mu_3 \varepsilon_{ij}' + 2 \mu_2 \varepsilon_{ij}'' + 2 \lambda_5 \tilde{h}_{ij}, \]

\[t', t'' - \text{hysteresis over time due to loading caused by elastic and inelastic parts,} \]

\[t', t'' - \text{loading due to loading caused by elastic and inelastic parts,} \]

\[a_{11} \Delta t' + a_{12} \Delta t'' - \alpha (t' - t'') = -\rho_1 f_1, \]

\[a_{21} \Delta t' + a_{22} \Delta t'' + \alpha (t' - t'') = -\rho_2 f_2 - \Omega - \Theta, \]
სახ. \(a_{11}, a_{12}, a_{21}, a_{22}, \alpha - \) სვალრეგ საქონლის.

თეილნინგული ქონლის გარდაქცევით გადაადგილებული წინა ქონლებით სწორ ქონლის

\[
\begin{align*}
\alpha \frac{\Delta u'}{+ b_{1}g \text{rad}} &= \frac{\alpha}{u''} + d_{1}g \text{rad}, \\
\beta \frac{\Delta u'}{+ b_{2}g \text{rad}} &= \frac{\beta}{u''} - \beta_{11}g \text{grad} - \beta_{22}g \text{grad} = -\rho_{1}F' , \\
\gamma \frac{\Delta u'}{+ b_{3}g \text{rad}} &= \frac{\gamma}{u''} + b_{2}g \text{rad} - \beta_{21}g \text{grad} - \beta_{22}g \text{grad} = -\rho_{2}F'' .
\end{align*}
\]

\[\Omega - \Theta.\]

\[\text{(19)}\]

\[\text{ქონლით ქონლით ქო

\[\sigma_{ij}' - \delta_{ij}(\Pi - \alpha_{2}), \quad \sigma_{ij}'' + \delta_{ij}(\Pi - \alpha_{2}).\]

\[\text{(10)}\]

\[\text{რამდენიმე ზოლისგან მხოლოდ ფიქსირდება საჭირო ქონლები დამოუკიდებლობა (გულიან-მაგურამი).}\]

\[P_{ij} := (P'_{ij}, P''_{ij})^{T}, \quad U_{j} := (u'_{j}, \ u''_{j})^{T}, \quad \epsilon_{ij} := (\epsilon'_{ij}, \ \epsilon''_{ij})^{T}, \quad H_{ij} := (h_{ij}, \ \tilde{h}_{ij})^{T}.\]

\[\text{(11)}\]

\[\text{(10) და (11) დამოუკიდებლობა შიდა დოლორობებზე (11) და (12) თანამდებობით რომ წვდომა ქონლებით სითხით}

\[\partial_{i}(P_{ij} + P_{ik} \otimes \partial_{k}U_{j}) + \Phi_{j} = 0 \quad \Omega - \Theta, \]

\[P_{ij} = \Lambda \epsilon_{kk} \delta_{ij} + 2M \epsilon_{ij} - 2\lambda_{5}H_{ij} \quad \Omega - \Theta.\]

\[\text{(12)}\]

\[\text{(13)}\]

\[\Phi_{j} = (\rho_{1}F'_{j}, \rho_{2}F''_{j})^{T}, \quad U = (u', \ u'')^{T}, \]

\[\Lambda = \left(\begin{array}{cc}
\frac{\lambda_{1} - \alpha_{2}\rho_{2}}{\rho} & \lambda_{3} - \alpha_{2}\rho_{1} \\
\lambda_{4} + \frac{\alpha_{2}\rho_{2}}{\rho} & \lambda_{2} + \frac{\alpha_{2}\rho_{1}}{\rho}
\end{array} \right), \quad M = \left(\begin{array}{cc}
\mu_{1} & \mu_{3} \\
\mu_{3} & \mu_{2}
\end{array} \right);\]

\[\text{(14)}\]

\[\text{ოთვალობით დამოუკიდებლობა შექმავთ თანმხმარე}

\[(a_{1}, \ a_{2})^{T} \odot (b_{1}, \ b_{2})^{T} = (a_{1}b_{1}, \ a_{2}b_{2})^{T}.\]

\[\text{(13)}\]

\[\text{თვითმყოფი ნორმალი ტრანზიცია შექმავთ სითხით}

\[\epsilon_{ij} = \frac{1}{2}(\partial_{i}U_{j} + \partial_{j}U_{i} + \partial_{k}U_{k} \otimes \partial_{j}U_{k}),\]

\[\text{(15)}\]

\[\text{მთლიან (14) თვითმყოფი ნორმალი მიმდებარე}

\[H_{ij} = \frac{1}{2}S(\partial_{i}U_{j} - \partial_{j}U_{i} + \partial_{k}U_{k} \otimes (E\partial_{j}U_{k})), \quad S = \left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array} \right), \quad E = \left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right).\]

\[\text{(16)}\]

\[\text{მთლიან (13), (15) და (16) თვითმყოფობაშივე შექმავთ}

\[P_{ij} = \Lambda \delta_{k}U_{k} \delta_{ij} + (M - \lambda_{5}S)\partial_{k}U_{j} + (M + \lambda_{5}S)\partial_{j}U_{i} + \frac{1}{2}\Lambda(\partial_{m}U_{k} \otimes \partial_{m}U_{k})\delta_{ij} + M(\partial_{k}U_{k} \otimes \partial_{j}U_{k}) - \lambda_{5}S(\partial_{k}U_{k} \otimes (E\partial_{j}U_{k})).\]

\[\text{(17)}\]

\[\text{თუ ქონლებში დამოუკიდებლობა შექმავთ ბინარულფორმატოვებთ}

\[A := \left(\begin{array}{cc}
a_{1} & c \\
c & a_{2}
\end{array} \right), \quad B := \left(\begin{array}{cc}
b_{1} & d \\
d & b_{2}
\end{array} \right),\]

\[\text{(18)}\]
(11.16) ფრაქტონურის თხემიანი შეფასება

\[M - \lambda_5 S = A, \quad M + \lambda_5 S = B - \Lambda. \] \hspace{1cm} (1.19)

შემდეგ, ასევე შედეგი აღწერილი ქმა

\[T := (t', t'')^T, \quad W := (\rho_1 f_1, \rho_2 f_2)^T, \quad \Phi := (\rho_1 F', \rho_2 F'')^T, \]

(11.18) სისტემა რაოდენობით შედეგებით

\[A' \Delta T - \alpha S T = -W, \] \hspace{1cm} (120)

ხოლო (19) სისტემა შედეგი ხდება

\[A \Delta U + B \text{gradw} U - B' \text{grad} T = -\Phi, \]

(11.13) თანდამედინება თუმცა გადახვითი შესაბამისობა ობიექტით ხდება

\[P_{ij} = (-B'T + \Lambda \varepsilon_{kk}) \delta_{ij} + 2M \varepsilon_{ij} - 2\lambda_5 H_{ij}. \] \hspace{1cm} (11.13')

თუ \(e_1, e_2, e_3 \) დაჯგუფები სისტემათა შედეგების ორგანული (12), (15) და (16)

(11.13) თანდამედინება თუმცა გადახვითი შესაბამისობა ობიექტით ხდება

\[\partial_t \left[P^i + (e_k P^i) \odot \partial_k U \right] + \Phi = 0 \quad \Omega - \Omega, \] \hspace{1cm} (121)

\[\varepsilon_{ij} = \frac{1}{2} (e_j \partial_i U + e_i \partial_j U + \partial_i U \odot \partial_j U), \] \hspace{1cm} (122)

\[H_{ij} = \frac{1}{2} S (e_j \partial_i U - e_i \partial_j U + \partial_i U \odot (E \partial_j U)), \] \hspace{1cm} (123)

სადაც \(P^i = P^{i'j} e_j = (P^{ij} e_j, P^{''ij} e_j)^T \) - სახელით გრადიენტური შესაბამისი, თუმცა

\[\frac{1}{\sqrt{g}} \partial_t \left[\sqrt{g} (P^{ij} R_j + P^{ik} \odot \partial_k U) \right] + \Phi = 0 \quad \Omega - \Omega, \] \hspace{1cm} (124)

სადაც \(g \) - სქემისთვის მონოჯგუფელი ჰიპერფურციილი ფუნქციის სისტემა თანამედროვე, \(P^{ij} = (P^{ii'}, P^{ii''})^T \) - სახელით დედოფლის შემადგენლობით სისტემა თანამედროვე, \(R_j \) - კოდმოდობითი სისტემის ცვლილებითად. საჭიროა რას სქემათა გრადიენტი (\(x', x', x' \)); \(\partial_k := \frac{\partial}{\partial x_k} \).
პარაგრაფა. დავაქტოვზით საგვარიგირის სისტემაში ხარჯის განლაგები არსების 5 = 1 და (124) სისტემა გამოყოფილ ოდე (121)-ზე. 5 (124)-ში პარაგრაფი პირველო რეჟიმში ყო ჯირიკებში მაგრამ ტოი- ნიყო ძალის განლაგები

\[T = \tau^{ij} R_i \otimes R_j = (P^{ij} + P^{ik} \odot \nabla_{k} U^{j}) R_i \otimes R_j, \] (125)

სადაც \(\nabla_{k} \) -ჰელსონიქის ჰიოგრაფიული წყარპიქრობის სისტემა (\(\partial_i U = R_k \nabla_{i} U^k \)), \(\varepsilon \) - ლანჩური, ამჟამითი ნაშრომის ხარჯის რეჟიმში,

\[\text{div} T = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^i} (\sqrt{g} \tau^{ij} R_j). \]

პირველ ჰელიცოპორტურ ჯგუფში ყო ძალისარჩევით ლიხების სისტემა ხარჯის რეჟიმში. (122) და (123)-ში ანალოგიური დონები დაყოფილია სექტეფირა საგვარიგირი სის- ტემში ხარჯში.

\[\varepsilon_{ij} = \frac{1}{2} (R_j \partial_i U + R_i \partial_j U + \partial_i U \odot \partial_j U), \]
\[H_{ij} = \frac{1}{2} S (R_j \partial_i U - R_i \partial_j U + \partial_i U \odot (E \partial_j U)). \] (126)

მაგრამ დანიშნულების ვარიანტიზე

\[R_j \partial_i U = \nabla_i U_j, \quad \partial_i U = R_k \nabla_i U^k, \]
(126) დონები ჯგუფში ჩანარტყმით შეიძლება იყოს

\[\varepsilon_i = \frac{1}{2} (\nabla_i U_j + \nabla_j U_i + \nabla_i U_k \odot \nabla_j U^k), \]
\[H_{ij} = \frac{1}{2} S \left(\nabla_i U_j - \nabla_j U_i + \nabla_i U_k \odot (E \nabla_j U^k) \right). \] (127)

სადაც \(U^k = (u^k, u'^k)^T \) - ჯგუფში პარამეტრი გრადიენტირებული ჰიდრომექანიკური ძალის ქველობა შეჯღვრული ჰიდრო-ხელიკოპტერი. (113) კანონის ქართულ პირობა

\[P_{ij} = \Lambda \varepsilon_i \varepsilon_j + 2M \varepsilon_i + -2\lambda_5 H_{ij}. \] (128)

თუ განთქმულურ ვარიანტი დავვით სითხეში [9]

\[g^{ij} = R^i R^j, \quad (R_k \partial_i U) R^k = \partial_i U, \]

სადაც \(R^i \) - ჰიდრომექანიკური სისტემის სწრაფი განლაგები, \(g^{ij} \) - ჰიდრომექანიკური გრადიენტის ჰიდრომექანიკური გრადიენტის ქველობა. მაგრამ \(P^i = P^i R^j \) გადაჰყურებლია, სადაც \(P^i \) ჰიდრომექანიკური გრადიენტის ქველობა. გრადიენტი მაგრამ განლაგებით

\[P^i = \Lambda(R^i \partial_j U) R^j + (M + \lambda_5)S(R^i \partial_j U) R^j + (M - \lambda_5 S)(R^i R^j) \partial_j U + \frac{1}{2} \Lambda(\partial_i U \odot \partial_k U) R^i + M(\partial^i U \odot \partial_j U) R^j - \lambda_5 S(\partial^i U \odot (E \partial_j U)) R^j, \] (129)
(30) თანდაყოფილობის ბეჭდებთა ზარიფით ბუდობად ლაბლურავი

\[P' = \Lambda (R'_1 \partial_j U) R'_1 + (B - \Lambda) (R'_1 \partial_j U) R'_1 + A (R'_1 R'_j) \partial_j U + \frac{1}{2} \Lambda (\partial_j U \odot \partial^k U) R'_1 + M (\partial_j U \odot \partial_j U) R'_1 - \lambda S (\partial_j U \odot (E \partial_j U)) R'_1 - B'T R' \]

\[(129) \text{თომადორალური ბეჭდებთა ზარიფით ბუდობად} \]

\[P' = C^{ij} \partial_j U + N^{ijk} \partial_j U \odot \partial_k U - \lambda S (\partial_j U \odot (E \partial_j U)) R'_1, \]

სადაც \(C^{ij} \) და \(N^{ijk} \) თანდაყოფილობის გამოთვალებით, ზეგავანის, ზარიფით ბუდობად

\[C^{ij} = \Lambda R^i \odot R^j + (B - \Lambda) R^j \odot R^i + A (R^i R^j) E, \quad N^{ijk} = \frac{1}{2} \Lambda (R^j R^k) R^i + M (R^i R^k) R^j, \]

სადაც \(E \) - ზრდული ალბაპირ მოთხოვნით, ხოლო \(\lambda \) თანდაყოფილობი ზარიფით

\[E = R_i \odot R^i = R^i \odot R_i = g^{ij}_i R_i \odot R_i = g^{ij}_i R^i \odot R^i. \]

\(C^{ij} \) თანდაყოფილობი ბუდობად ლაბლურავი, ხოლო \(E^{ij} \) თანდაყოფილობი ბუდობად

\[C^{ij} = E^{ij} R_p \odot R_q, \]

სადაც \(E^{ij} \) - ბრალდი მოთხოვნის თანდაყოფილობა ბუდობად.

\[E^{ij} = \Lambda g^{ip} g^{jq} + (B - \Lambda) g^{iq} g^{jp} + A g^{ij} g^{pq}. \]

(31) თხრობალური ბუდობა შესამინაროფქალ კოროლონიშვილმა საგანგინ პარამეტრთა ბარაქში [27]

\[A^i \nabla_i (\nabla^i T) - \sigma S T = -W, \]

სადაც \(\nabla^i \) - სორრი ლოკალართან გარდამამართებულ ბუდობად.

თანდაყოფილობალური თხრობა თანდაყოფილობა შესამინაროფქალ კოროლონიშვილმა საგანგინ პარამეტრთა ბარაქში (131) გაძლიერებით ზარიფით ბუდობად სხვადასხვა გამოთვლით

\[\frac{1}{\sqrt{g}} A^i \partial_i (\sqrt{g} g^{ij} \partial_j T) - \sigma S T = -W. \]

(1.12) ახლა, საჭიროა ითვალისწინოს, რომ ნომერები განმართებული და გათვლილი ნომერები გამოთვლილი და განმართებული წარწერილი ბარაქში (124), (129) ჟახლის, ამბათი თანდაყოფილობის შემთხვევაში (129)-ის ბრძოლით გამოყენება (130) თხრობალური. თხრობალური გამოთვლები ართი შემთხვევაში სათავებით სხვა სექტორში. ნომერები გათვალისწინებით მისაღწერი პირობები წარმოადგენს (122), (131) ბუდობა პირობით სამშობლოთ ჭიშკერილი პირობებით. ხოლო გათვალისწინებით მისაღწერი პირობები და გათვალისწინებით შემთხიანთი პირობები (122), (131) მცხოვრები პირობები უნდა ჰქონდეს ის ობიექტი მაღალ-ფაზოს, პარამეტრი

1. \(U \left(x^1, x^2, x^3 \right) = u^0 \partial \Omega \cdot \gamma; \)
2. \(\tau \left(\omega \cdot l = l, l = l'^i \right) \).

სადაც \(u^0, \tau \) - ხარჯები ცხოველთა უმასშტაბი უსაფლავება, \(l \left(l, l_2, l_3 \right) \partial \Omega \cdot \gamma, \) ხოლო \(l \) - ხარჯები ცხოველთა უმასშტაბი უსაფლავება, \(l \left(l, l_2, l_3 \right) \partial \Omega \cdot \gamma, \) ხოლო ქრონიკა განსახიერები.
§2. ბინარული ხარჯულიდან პროგრესიული გარეშე მიწასწორების გარკვეულობები

განმარლით აღ ჰქო ჰკვალიფიცირებული ბინარული ხარჯული 2h ჰოქოქთ (h ხარჯული და ჰკვალიფიცირებული ხარჯული და ბინარული ხარჯული მიწასწორები და ჰკვალიფიცირებული ხარჯული მიწასწორები) Ω4 გარეშე ბინარული ხარჯული, რომლის მიუხედავად არ გაბრძანდით, ვითარება ბინარული ხარჯული გარკვეულობებს გარკვეულობები. საჯარავი ბინარული ხარჯული გარკვეულობებს არის პროგრესიული გარეშე მიწასწორები, რომლებიც ქრჩო ვაჰ ქრო პროგრესიული, 2h გამოცდილები მფარავი კარშხლის ჰოქოქ საჯარავი ბინარული ხარჯული.

განმართა ჰორ ჰკვალიფიცირებული ბინარული ხარჯული გარკვეულობები და ჰკვალიფიცირებული ბინარული ხარჯული მიწასწორები. უკან მიქალი ᴨ - ზე მიწასწორები M ჰკვალიფიცირებული R მარჯდულ-ჰკვალიფიცირებული გარკვეულობებს დაარსებით (შან 33.143)

\[
R = r(x^1, x^2) + x^3 u(x^1, x^2),
\]

(2.1)

საიდან \(x^1, x^2 \in \omega \) ჰკვალიფიცირებული გარეშე მიწასწორები, \(r \) და \(u \) ჰკვალიფიცირებული \((x^1, x^2) \in \omega \) ჰკვალიფიცირებული გარეშე მიწასწორები, \(x^3 \) ჰარჯული. (2.1)-ის წონა ჰქო ჰკვალიფიცირებული გარეშე მიწასწორები და ჰკვალიფიცირებული ბინარული ხარჯული მფარავი და ჰკვალიფიცირებული ბინარული ხარჯული გარკვეულობა ლთაღი ჰკუნთჰარი თვლები, მიღებული [5]

\[
R_α = (δ_α^β - x^3 b_β^3) r_β, \quad R_3 = n,
\]

(2.2)

საიდან \(b_β^3 \in \omega \) ჰკვალიფიცირებული ბინარული ხარჯული გარკვეულობები. მიმართ (2.2) წონა \(\omega \) ჰკვალიფიცირებული ბინარული ხარჯული გარკვეულობა ჰარჯული გარეშე მიწასწორები. ჰარჯული საჭიროა ჰკვალიფიცირებული ბინარული ხარჯული გარკვეულობა გარკვეით გარკვეულობა

\[
\sqrt{g} = R_1 R_2 R_3 = \sqrt{a(1 - 2H x^3 + K(x^3)^2)},
\]

(2.3)

საიდან \(a = a_{11} a_{22} - a_{12}^2 > 0 \) ჰკვალიფიცირებული ბინარული ხარჯული გარკვეულობა ჰკვალიფიცირებული \(H \) და \(K \) ფორუსში, ამ ჰკვალიფიცირებული ბინარული ხარჯული გარკვეულობა თავად გამოიყენება, ჯოხ გარკვეულობა გარკვეულობა.

\[
H = \frac{1}{2}(k_1 + k_2) = \frac{1}{2} b_α^3, \quad K = k_1 k_2 b_1^2 b_2^2 - b_1^2 b_2^2,
\]

(2.4)

საიდან \(k_1, k_2 \in \omega \) ჰკვალიფიცირებული ბინარული ხარჯული გარკვეულობა. (2.3) ბირთვული (2.4) შესაბამი ჰკვალიფიცირებული ბინარული ხარჯული გარკვეულობა ჰკვალიფიცირებული ბინარული ხარჯული გარკვეულობა ჰკვალიფიცირებული ბინარული ხარჯული გარკვეულობა.

\[
\sqrt{g} = \sqrt{a(1 - k_1 x^3)(1 - k_2 x^3)},
\]

(2.5)

\[\text{ი. 2} \] ჰკვალიფიცირებული ბინარული ხარჯული გარკვეულობა ჰკვალიფიცირებული ბინარული ხარჯული გარკვეულობა.
თუ ქ უდაბნიური საკონტროლაციო ჭრილით აღიარება სოკოლური ჭრილით, ბოლო (2.2) ფუნქციებს მიიღებს სახეს)

\[R_1 = (1 - k_1 x^3) r_1, \quad R_2 = (1 - k_2 x^3) r_2, \quad R_3 = n. \]
(2.6)

მეორე, როცა გამოიყენება \(t, x, x^3 \) კორონალიზაცია გამჭვირვალები ფუნქციით \(f(x^1, x^2, x^3) \) ლინეარური ტერმები, ჯგუფები-ფუნქციები, ან გამოვლინები ურნები, დაჯგუფებობა, რომ ქიმია სამართლიან საგანა, სოკოლური ჭრილით დეტალები (\(x^1, x^2 \)) ჯგუფების განხორციელები ქართული, რთული არაშეღვრისთვის ჯგუფით [\(-1, 1\)]. მოცემულად, როცა \(x^3 \in [-h, h] \), არაგარემონტი ელემენტს ქვემო (2.7)

\[f(x^1, x^2, x^3) = \sum_{k=0}^{\infty} \frac{(k)}{2^k} \int_{-h}^{h} f(x^1, x^2, x^3) P_k \left(\frac{x^3}{h} \right) dx^3, \quad (x^1, x^2) \in \omega, \]
(2.7)

სადაც

\[\frac{(k)}{2^k} \int_{-h}^{h} f(x^1, x^2, x^3) P_k \left(\frac{x^3}{h} \right) dx^3 \quad (k = 0, 1, \ldots). \]

(2.7) ამოცანის \(f(x^1, x^2) \) ვექტორული ფუნქცია შესაძლოა სამ- ქანარიქით იქნას მიღება.

(2.7) მეორე გამო პროცენტირებული განხორცილები და ჭრილი ნაშთისყოფით კარგი გამოკვლევით საომიდან, ანუ კურთული ჯგუფით ბოლო (2.124(129))

\[\frac{1}{\sqrt{g}} \partial_i \left[\sqrt{g} (P^i + P^{ik} \partial_k U) \right] + \Phi = 0 \quad \Omega^k = 0, \]
(2.8)

\[P' = \Lambda (R' \partial_j U) R^j + (M + \lambda_s S)(R' \partial_j U) R^j + (M - \lambda_s S)(R' R^j) \partial_j U + \frac{1}{2} \Lambda (\partial_k U \partial^k U) R^j + M (\partial U \partial_j U) R^j - \lambda_s S (\partial U \partial_j U) R^j \quad \widehat{\rho} = 0. \]
(2.9)

პირველი პროცენტი გამოფერდები შესაძლო შემთხვევით პორტალი არხმა (2.125)

\[\tau^i = T \cdot R^i = \tau^{ij} R_j := P^i + P^{ik} \partial_k U = (P^{ij} + P^{ik} \partial^k U) R_j = \]
(2.10)

სადაც

\[P = P^{ij} R_i \otimes R_j. \]

\(T \) და \(P \) მოქმედი არაშეღვრის ურნები, შესაძლოა შემთხვევით მოქმედი ჭრილით არაშეღვრის ჯგუფში:
\[T = (T', T'')^T, \quad P = (P', P'')^T. \]

(2.8) და (2.9) სათანადო არაშეღვრის შემთხვევით მოქმედი ჭრილით ჯგუფში ჭრილით ჭრილით ჭრილით ზრდით (2.10)-ის პორტალ, ჯგუფში სახე

\[\frac{1}{\sqrt{g}} \partial_i (\sqrt{g} \tau^i) + \Phi = 0 \quad \Omega^k = 0, \]
(2.11)
\[\tau^i = \Lambda(R^i \partial_j U)R^j + (B - \Lambda)(R^i \partial_j U)R^j + A(R^i R^j)\partial_j U + \frac{1}{2} \Lambda(\partial_j U \circ \partial^k U)R^j + \\
+ M(\partial^i U \circ \partial^j U)R^j - \lambda_5 S(\partial^i U \circ (E \partial_j U))R^j + [A(R^i \partial_j U)] \circ \partial^i U + \\
+ [(B - \Lambda)(R^i \partial_j U)] \circ \partial^i U + [A(\partial^i UR^k)] \circ \partial_k U + \frac{1}{2} [A(\partial_k U \circ \partial^k U)] \circ \partial^i U + \\
+ [M(\partial^i U \circ \partial_j U)] \circ \partial^i U - \lambda_5 S(\partial^i U \circ (E \partial_j U)) \circ \partial^i U. \]

(2.12)

(2.12)–th analogously for the corresponding equations for the dynamical variables

\[N^i := \frac{1}{2} \Lambda(\partial_k U \circ \partial^k U)R^j + M(\partial^i U \circ \partial_j U)R^j - \lambda_5 S(\partial^i U \circ (E \partial_j U))R^j + \\
+ [A(R^i \partial_j U)] \circ \partial^i U + [(B - \Lambda)(R^i \partial_j U)] \circ \partial^i U + [A(\partial^i UR^k)] \circ \partial_k U + \\
+ \frac{1}{2} [A(\partial_k U \circ \partial^k U)] \circ \partial^i U + [M(\partial^i U \circ \partial_j U)] \circ \partial^i U - \\
- \lambda_5 S(\partial^i U \circ (E \partial_j U)) \circ \partial^i U, \]

(2.13)

Then it follows from the above equations that

\[\tau^i = \Lambda(R^i \partial_j U)R^j + (M + \lambda_5 S)(R^i \partial_j U)R^j + (M - \lambda_5 S)(R^i R^j)\partial_j U + N^i. \]

(2.14)

Some properties of the dynamical variables and its derivatives are derived from the following equations:

\[e_{ij} = \frac{1}{2} (\dot{v}_i U_j + \dot{v}_j U_i), \quad h_{ij} = \frac{1}{2} S(\dot{v}_i U_j - \dot{v}_j U_i), \]

where \(e_{ij} = (e^i_j, e^j_i)^T, \) \(h_{ij} = (h_{ij}, h_{ji})^T, \) and (127) follows from the above equations

\[e_{ij} = e_{ij} + \frac{1}{2} \dot{v}_i U_k \circ \dot{v}_j U^k, \quad h_{ij} = h_{ij} + \frac{1}{2} S(\dot{v}_i U_k \circ (E \dot{v}_j U^k)). \]

Similarly (128) follows from the above equations:

\[p_{ij} = A^{ijpq} \left(p_{p} + \frac{1}{2} \dot{\nabla}_p U_m \circ \dot{\nabla}_q U^m \right) - 2\lambda_5 h_{ij} - \lambda_5 S(\dot{\nabla}_i U_k \circ (E \dot{\nabla}_j U^k)), \]

(2.15)

Similarly, \(A^{ijpq} \) obeys the following equations under symplectic transformation

\[A^{ijpq} = A^i_{jgpq} p^g p^q + M(g^{jgp} g^{ip} + g^{iq} g^{jp}). \]

(2.16)

The above equations are obtained from the previous ones by using the symmetry of the \(A^{ijpq} \) under the symplectic transformation and the \((2.10) \) follows from the above

\[\tau_{ij} = A^{ijpq} e_{pq} - 2\lambda_5 h_{ij} + \frac{1}{2} A^{ijpq} \dot{v}_p U_m \circ \dot{v}_q U^m + (A^{kpq} \dot{v}_p U_q) \circ \dot{v}_k U^j - \\
- \lambda_5 S(\dot{v}_i U_k \circ (E \dot{v}_j U^k)) - 2\lambda_5 h_{ik} \circ \dot{v}_k U^j + \\
+ \frac{1}{2} (A^{kpq} \dot{v}_p U_m \circ \dot{v}_q U^m) \circ \dot{v}_k U^j - \lambda_5 S(\dot{v}_i U_m \circ (E \dot{v}_k U^m)) \circ \dot{v}_k U^j. \]

(2.17)
საფუძვლა

\[
N^{ij} = N^i R^j = \frac{1}{2} A_{ijpq} \hat{\nabla}_p U_m \otimes \hat{\nabla}_q U^m + (A_{ijpq} \hat{\nabla}_p U_q) \otimes \hat{\nabla}_k U^j -
- \lambda_S (\hat{\nabla}^i U_k \otimes (E \hat{\nabla}^j U^k)) - 2 \lambda_h \hat{\nabla}^i U^j +
+ \frac{1}{2} (A_{ijpq} \hat{\nabla}_p U_m \otimes \hat{\nabla}_q U^m) \otimes \hat{\nabla}_k U^j - \lambda_S (\hat{\nabla}^i U_m \otimes (E \hat{\nabla}^j U^m)) \otimes \hat{\nabla}_k U^j.
\] (2.18)

ზოგიები შორიდან (2.11), (2.14) სახელმწიფომდებათი განიხილულია სისტემა თანამფრინავის შემოთქვამი სისტემა განიხილულია რ. ე. გარემო ალგორითმის პროდუქტიურა სისტემა გამოიყენება არამტივად და მიღება ახასიათებს სისტემის არამტივად თანამშრომალური დონის არამტივლი განიხილულები [5], [7], [10], [49].

(2.8)-ში თანდაცვული მოძრაობით შედგინებულ ფორმულა

\[
(k + \frac{1}{2}) \frac{1}{h} P_k \left(\frac{x^3}{h} \right) \sqrt{\frac{g}{a}}, \quad k = 0, 1, ..., \] (2.19)

dა გახსნილია მთელ ხანით (−h, h)-ში. შედგინებულ ფორმულა

\[
(k + \frac{1}{2}) \frac{1}{h \sqrt{a}} \int_{-h}^{h} \partial_i (\sqrt{g} \tau^i) P_k \left(\frac{x^3}{h} \right) dx^3 +
+ \left(k + \frac{1}{2} \right) \frac{1}{h} \int_{-h}^{h} \sqrt{\frac{g}{a}} \Phi P_k \left(\frac{x^3}{h} \right) dx^3 = 0, \quad k = 0, 1, ..., \] (2.20)

(2.20) საჭიროა ალგორითმის იპოლოგიურობა (2.11) განიხილული სისტემა. სისტემა აერთიანებს ირმის და ირმის ნაწილი სისტემა (−1, 1) შუაჩაური და ვ. წ. (2.19) ფორმული (−h, h) შუაჩაური არის შესაძლო მაგალითი განმსხვრევა (x, x²) პუნქტით ამოცანა შუაჩაურ სისტემა.

ინტეგრალი ალგორითმის დამოკიდებულების განიხილულის სახელმწიფო (2.19) ფორმულა

\[
\int_{-h}^{h} \partial_\alpha (\sqrt{g} \tau^\alpha) P_k \left(\frac{x^3}{h} \right) dx^3 = \int_{-h}^{h} \partial_\alpha \left(\sqrt{g} \tau^\alpha P_k \left(\frac{x^3}{h} \right) \right) dx^3 +
+ \int_{-h}^{h} \sqrt{g} \tau^\alpha P_k' \left(\frac{x^3}{h} \right) \frac{x^3}{h^2} \partial_\alpha h dx^3 = \partial_\alpha \int_{-h}^{h} \sqrt{g} \tau^\alpha P_k \left(\frac{x^3}{h} \right) dx^3 -
- \partial_\alpha h \sqrt{g} \tau^\alpha P_k (1) - \partial_\alpha h \sqrt{g} \tau^\alpha P_k (-1) +
+ \partial_\alpha \ln h \int_{-h}^{h} \sqrt{g} \tau^\alpha \frac{x^3}{h} P_k' \left(\frac{x^3}{h} \right) dx^3 := \sum_{(k)} = \sum_{(k)}', \sum_{(k)}'' \right) \tau, \] (2.21)

საიდან „+“ და „−“ მოდული თანამედროვე თანამშრომალი სისტემა. მიუხედავად ალგორითმი წინამდეგ. ზოგიები შორიდან, როგორ (5), § 4

\[
P_k (1) = 1, \quad P_k (-1) = (-1)^k,
\]
\[xP'_k(x) = kP_k(x) + (2k - 3)P_{k-2}(x) + (2k - 7)P_{k-4}(x) + \ldots, \]

where (2.21) holds for some unspecified function

\[
\sum^{(k)} = \partial_\alpha \int_{-h}^{h} \sqrt{g} \tau^\alpha P_k \left(\frac{x^3}{h} \right) dx^3 - \sqrt{a} \partial_\alpha h \left[\sqrt{\frac{g^+}{a}} \tau^\alpha_+ + (-1)^k \sqrt{\frac{g^-}{a}} \tau^\alpha_- \right] + \\
\partial_\alpha \ln h \int_{-h}^{h} \sqrt{g} \tau^\alpha \left[kP_k \left(\frac{x^3}{h} \right) + (2k - 3)P_{k-2} \left(\frac{x^3}{h} \right) + (2k - 7)P_{k-4} \left(\frac{x^3}{h} \right) + \ldots \right] dx^3.
\]

so that the resulting functions \((k)^{(r)} \tau \) are defined as

\[(k)^{(r)} \tau = (k)^{(r)} \tau_+ + (k)^{(r)} \tau_- \]

and that

\[(k + \frac{1}{2}) \frac{1}{h \sqrt{a}} \sum^{(k)} = \frac{1}{\sqrt{a}} \partial_\alpha (\sqrt{v} \tau^\alpha) + \partial_\alpha \ln h \left[(k + 1)^{(k)} \tau^\alpha + (2k + 1)(k-2)^{(k-2)} \tau^\alpha + \ldots \right] - \left(k + \frac{1}{2} \right) \partial_\alpha \ln h \left[\sqrt{\frac{g^+}{a}} \tau^\alpha_+ + (-1)^k \sqrt{\frac{g^-}{a}} \tau^\alpha_- \right]. \]

Thus, we have

\[\int_{-h}^{h} \partial_3 (\sqrt{g} \tau^3) P_k \left(\frac{x^3}{h} \right) dx^3 = \sqrt{g} \tau^3_+ + (-1)^k \sqrt{g} \tau^3_- - \frac{1}{h} \int_{-h}^{h} \sqrt{g} \tau^3 P'_k \left(\frac{x^3}{h} \right) dx^3. \]

so that

\[P'_k(x) = (2k - 1)P_{k-1}(x) + (2k - 5)P_{k-3}(x) + \ldots, \]

and (2.24) follows from

\[\left(k + \frac{1}{2} \right) \frac{1}{h \sqrt{a}} \int_{-h}^{h} \partial_3 (\sqrt{g} \tau^3) P_k \left(\frac{x^3}{h} \right) dx^3 = -\left(k + \frac{1}{2} \right) \int_{-h}^{h} \left[(k-1)^{(k-1)} \tau^3 + (k-3)^{(k-3)} \tau^3 + \ldots \right] + \]

\[+ \left(k + \frac{1}{2} \right) \frac{1}{h} \left[\sqrt{\frac{g^+}{a}} \tau^3_+ + (-1)^k \sqrt{\frac{g^-}{a}} \tau^3_- \right]. \]

(2.23) and (2.25) follow directly from (2.20). The functions \(\tilde{f} \) and \(\tilde{g} \) are defined by

\[\frac{1}{\sqrt{a}} \partial_\alpha (\sqrt{v} \tau^\alpha) + \partial_\alpha \ln h \left(\frac{1}{h} \tau^3 - \frac{1}{h} \tau^3 + \left(\frac{k}{h} \right)^3 \right) = 0, \quad k = 0, 1, \ldots, \]
სიცოცხლე

\[
\frac{(k)}{\tau}^{3} = (2k + 1)\left(\frac{(k-1)}{\tau}^{3} + \frac{(k-3)}{\tau}^{3} + \ldots\right),
\]

\[
\frac{(k)}{\tau}^{o} = (k + 1)\left(\frac{(k)}{\tau}^{o} + (2k + 1)(\frac{(k-2)}{\tau}^{o} + \frac{(k-4)}{\tau}^{o} + \ldots\right),
\]

მინიმუმ

\[\frac{(-n)}{\tau} = 0, \text{ სთითი } n > 0,\]

\[
\frac{(k)}{F} = \left(k + \frac{1}{2}\right)\frac{1}{\hbar} \int \sqrt{\frac{g}{a}} \Phi P_{k} \left(\frac{x^{2}}{\hbar}\right) dx^{2} +
\]

\[
+ \left(k + \frac{1}{2}\right)\frac{1}{\hbar} \left\{ \sqrt{\frac{g}{a}} \left[\tau_{3}^{o} - \partial_{x} \tau_{4}^{o}\right] - (-1)^{k} \sqrt{\frac{g}{a}} \left[\tau_{2}^{o} + \partial_{x} \tau_{1}^{o}\right] \right\}.\]

ქვემოთ მიცემული ფორუმით, თუმცა არსებული ავტომობილით მიღებული (გზებით სივრცე თავში გვიცადება იმისა, რომ გვირჩევთ)

\[\frac{(k)}{F} \equiv \left(k + \frac{1}{2}\right)\frac{1}{\hbar} \left[\tau_{(n+)} + (-1)^{k} \tau_{(n-)}\right],\]

სადაც \(n^{+}\) და \(n^{-}\) – ადგილი პორტენილის – \(\omega^{+}\) და \(\omega^{-}\) მიღებული ტრუნვითები, მთელი სიცოცხლე.

თუ \(\omega^{+}\) რეაქტიული მარჯვენა მთელი სიცოცხლე და მარჯვენა მიღება ლომდალი ლომნირები [9], თუმცა

\[
\nabla_{o} \frac{(k)}{\tau}^{\alpha \beta} - b_{o}^{\alpha} \frac{(k)}{\tau}^{\alpha 3} + \partial_{x} \ln h \frac{(k)}{\tau}^{\alpha 3} - \frac{1}{h} \frac{(k)}{\tau}^{3 \beta} + \frac{(k)}{F}^{\beta} = 0,
\]

\[
\nabla_{o} \frac{(k)}{\tau}^{\alpha 3} + b_{o}^{\beta} \frac{(k)}{\tau}^{\alpha \beta} + \partial_{x} \ln h \frac{(k)}{\tau}^{\alpha 3} - \frac{1}{h} \frac{(k)}{\tau}^{3 \beta} + \frac{(k)}{F}^{\beta} = 0, \quad k = 0, 1, \ldots\]

სადაც \(\nabla_{o} \omega\) მიღებული ტრური ლომდალი ლომნირები სოლომოვანი.

\[
\frac{(k)}{\tau}^{3 j} = (2k + 1)(\frac{(k-1)}{\tau}^{3 j} + \frac{(k-3)}{\tau}^{3 j} + \ldots),
\]

\[
\frac{(k)}{\tau}^{o j} = (k + 1)\left(\frac{(k)}{\tau}^{o j} + (2k + 1)(\frac{(k-2)}{\tau}^{o j} + \frac{(k-4)}{\tau}^{o j} + \ldots\right),
\]

\[\frac{(-n)}{\tau} = 0, \text{ სთითი } n > 0, \quad F = (F, F) = (F_{\alpha} + F_{\beta}.)\]

ამისთვის, სიცოცხლე პირველ პრივალიზაციის პროცესში გამოყენებული სიცოცხლე ითვალისწინება ლომდალი ლომნირები პრივალიზაციის პროცესში, ქოთავს ლომნირები ლომდალი სიცოცხლე გამოყენებით სოლომოვანი.

\[1 - k_{1}x^{3} \cong 1, \quad 1 - k_{2}x^{3} \cong 1, \quad -h \leq x^{3} \leq \frac{h}{\sqrt{3}}.\]

(230)
ქ. გამოთხოვები (2.31) აღწერს, რომ აქ უნდა გამოვყოთ ქ. 1 და ქ. 2 დონეების სტრუქტურების ჩატარება (დაუბრუნან ფორმულა). ან სწორობდა ერთმანეთი სექცია (თეორიული გარემო) (2.30) დამატებით იქნება (2.3)-(2.6) დონეების საფუძვლის ჩატარება.

\[R_0 \equiv r_0, \quad R^o \equiv r^o, \quad R^3 = r_3 = n, \quad g_{\alpha \beta} \equiv a_{\alpha \beta}, \quad g^{\alpha \beta} \equiv a^{\alpha \beta}, \quad g \equiv a. \]

(2.31)

ჰომეორმოტორი გამოთხოვები (\(k_1 = k_2 = 0\)) სა დოლორმოტორი დონეების დამდეგის ჩატარება.

\[\tau^o \equiv \Lambda(r^o, \partial_4 U) + (B - \Lambda)(r^o, \partial_4 U)r^o + A(r^o r^o) \partial_4 U + \Lambda(n \partial_3 U)r^o + (B - \Lambda)(r^o \partial_3 U)n + N^o, \]

\[\tau^3 \equiv \Lambda(r^3, \partial_4 U)n + (B - \Lambda)(n \partial_3 U)r^o + A\partial_3 U + B(n \partial_3 U)n + N^3, \]

(2.32)

საფუძვლო მოთხოვნის საფუძვლის დონეების დამდეგი (2.13) სა საფუძვლო საფუძვლად შესრულებულ დონეები.

\[N^o \equiv \frac{1}{2} \Lambda(\partial_4 U \odot \partial^o U) r^o + M(\partial^o U \odot \partial_4 U) r^o - \lambda_5 S(\partial^o U \odot (E \partial_4 U)) r^o + \frac{1}{2} \Lambda(\partial_3 U \odot \partial^3 U) r^o + M(\partial^3 U \odot \partial_3 U) n - \lambda_5 S(\partial^o U \odot (E \partial_4 U)) \odot \partial^o U + \frac{1}{2} \Lambda(\partial_3 U \odot \partial^3 U) \odot \partial^o U + M(\partial^3 U \odot \partial_3 U) \odot \partial^o U - \lambda_5 S(\partial^o U \odot (E \partial_4 U)) \odot \partial^3 U. \]

(2.34)

\[N^3 \equiv \frac{1}{2} \Lambda(\partial_4 U \odot \partial^3 U) n + M(\partial^3 U \odot \partial_4 U) r^o - \lambda_5 S(\partial^3 U \odot (E \partial_4 U)) r^o + \frac{1}{2} \Lambda(\partial_3 U \odot \partial^3 U) \odot \partial^3 U + [M(\partial^3 U \odot \partial_3 U) \odot \partial^3 U + \lambda_5 S(\partial^3 U \odot (E \partial_4 U)) \odot \partial^3 U. \]

(2.35)

\[\partial^3 U \equiv \partial_3 U, \quad \partial^o = a^o \odot \partial_4. \]

(2.22) დონეები საფუძვლად.

\[\tau^i \equiv (k + \frac{1}{2}) \frac{1}{h} \int_{-h}^{h} \tau^i P_k \left(\frac{x^3}{h} \right) dx^3. \]

(2.36)

ხოლო მოთხოვნის სიმრავლეს, რომ მოთხოვნის (2.31) დონეები დუტო ძალა და ხოლო ნაცვლად (\(x^1, x^2\)) ფუნქციულის მიმდებარე ფუნქციული და ჩამოწერა დუტო ძალა და ხოლო ნაცვლად (\(x^1, x^2, x^3\)) ფუნქციულის მიმდებარე ფუნქციული და ჩამოწერა დუტო ძალა და ხოლო ნაცვლად ფუნქციული.

\[U(x^1, x^2, x^3) = \sum_{k=0}^{\infty} (U(x^1, x^2) P_k \left(\frac{x^3}{h} \right)), \]
\[U(x^1, x^2) = (k + \frac{1}{2}) \frac{1}{h} \int_{-h}^{h} U(x^1, x^2, x^3) P_k \left(\frac{x^3}{h} \right) dx^3. \]

Following (2.32), (2.33) and (2.36) to 3, the following

\[\langle r^\alpha \rangle \equiv \Lambda(r^\gamma D_\gamma \langle U \rangle) r^\rho + (B - \Lambda)(r^\rho D_\gamma \langle U \rangle) r^\gamma + A(r^\rho r^\gamma) D_\gamma \langle U \rangle + \Lambda(n D_3 \langle U \rangle) r^\rho + \]

\[+ (B - \Lambda)(r^\rho D_3 \langle U \rangle) n + \langle N \rangle^\rho, \quad (2.37) \]

\[\langle r^3 \rangle \equiv \Lambda(r^\gamma D_\gamma \langle U \rangle) n + (B - \Lambda)(n D_\gamma \langle U \rangle) r^\gamma + A D_3 \langle U \rangle + B(n D_3 \langle U \rangle) n + \langle N \rangle^3, \quad (2.38) \]

Define

\[D_j \langle U \rangle := (k + \frac{1}{2}) \frac{1}{h} \int_{-h}^{h} \partial_j U P_k \left(\frac{x^3}{h} \right) dx^3, \quad \langle N \rangle^j = (k + \frac{1}{2}) \frac{1}{h} \int_{-h}^{h} N^j P_k \left(\frac{x^3}{h} \right) dx^3. \quad (2.39) \]

Based on [5]

\[D_j \langle U \rangle = \begin{cases}
\partial_\alpha \langle U \rangle - \partial_\alpha \ln h \langle U \rangle, & \text{if } j = \alpha, \\
\frac{1}{h} (k') \langle U \rangle, & \text{if } j = 3,
\end{cases} \quad (2.40) \]

Define

\[\langle U \rangle := (2k + 1)(\langle U \rangle + \langle U \rangle + ...) \quad \langle U \rangle := k \langle U \rangle + (2k + 1)(\langle U \rangle + \langle U \rangle + ...). \quad (2.41) \]

\(n \). Follows naturally the definition of the contents of the above equations and follows the approach of the common practice. \(n \). According to [64] is known.

(2.34), (2.35) and (2.39) to 3, the following define the following

\[\langle N \rangle^\alpha \equiv (k + \frac{1}{2}) \frac{1}{h} \sum_{m=0}^{\langle U \rangle} \sum_{n=0}^{\langle U \rangle} \left(\frac{1}{2} \Lambda(D_\gamma \langle U \rangle \odot D_\gamma \langle U \rangle) r^\rho + M(D_\gamma \langle U \rangle \odot D_\gamma \langle U \rangle) r^\gamma - \right.

\[-\lambda_\delta S(D_\gamma \langle U \rangle \odot (E D_\gamma \langle U \rangle)) r^\rho + \left[\Lambda(r^\gamma D_\gamma \langle U \rangle) \odot D_\gamma \langle U \rangle + [(B - \Lambda)(r^\rho D_\gamma \langle U \rangle) \odot D_\gamma \langle U \rangle +
\]

\[+ [A(D_\gamma \langle U \rangle r^\rho)] \odot D_\gamma \langle U \rangle + \frac{1}{2} \Lambda(D_3 \langle U \rangle \odot D_3 \langle U \rangle) r^\rho + M(D_3 \langle U \rangle \odot D_3 \langle U \rangle) r^\gamma M(D_3 \langle U \rangle \odot D_3 \langle U \rangle) r^\gamma -
\]

\[-\lambda_\delta S(D_\gamma \langle U \rangle \odot (E D_\gamma \langle U \rangle)) n + [\Lambda(n D_3 \langle U \rangle) \odot D^3 \langle U \rangle + [(B - \Lambda)(r^\rho D_3 \langle U \rangle) \odot D^3 \langle U \rangle +
\]

\[+ [A(D^3 \langle U \rangle n) \odot D^3 \langle U \rangle)] \int_{-h}^{h} P_m \left(\frac{x^3}{h} \right) P_n \left(\frac{x^3}{h} \right) P_k \left(\frac{x^3}{h} \right) dx^3 + \sum_{i=0}^\infty \left[\frac{1}{2} \Lambda(D_\gamma \langle U \rangle \odot D_\gamma \langle U \rangle) \odot D^{(i)} \langle U \rangle + [M(D_\gamma \langle U \rangle \odot D_\gamma \langle U \rangle) \odot D^{(i)} \langle U \rangle -
\]

\[-\lambda_\delta S(D_\gamma \langle U \rangle \odot (E D_\gamma \langle U \rangle)) \odot D^{(i)} \langle U \rangle + \frac{1}{2} \Lambda(D_3 \langle U \rangle \odot D_3 \langle U \rangle) \odot D^{(i)} \langle U \rangle +
\]

\[+ [M(D_3 \langle U \rangle \odot D_3 \langle U \rangle) \odot D^{(i)} \langle U \rangle - \lambda_\delta S(D_\gamma \langle U \rangle \odot (E D_\gamma \langle U \rangle)) \odot D^{(i)} \langle U \rangle \times \right) \]

19
\[
N^3_{\text{a}} \approx (k + \frac{1}{2}) \frac{1}{h} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \left\{ \left[\frac{1}{2} \Lambda(D, \mathbf{U}) D,D \mathbf{U} + M(D, \mathbf{U}) D,D \mathbf{U}\right] r^2 - \lambda_5 S(D, \mathbf{U}) \right\} \mathbf{U} + \left[(B - \lambda_5)(D, \mathbf{U}) D,D \mathbf{U} + A(D, \mathbf{U}) r^2 \right] \mathbf{U} + M \left[\frac{1}{2} \Lambda(D, \mathbf{U}) D,D \mathbf{U} \right] \mathbf{U} + \left[(A + B)(D, \mathbf{U}) D,D \mathbf{U} \right] \mathbf{U} + \left[\sum_{l=0}^{\infty} \left[\frac{1}{2} \Lambda(D, \mathbf{U}) D,D \mathbf{U} \right] + M(D, \mathbf{U}) D,D \mathbf{U} \right] \mathbf{U} + \left[(M + \frac{1}{2} \Lambda)(D, \mathbf{U}) D,D \mathbf{U} \right] \mathbf{U} + \left[(A + B)(D, \mathbf{U}) D,D \mathbf{U} \right] \mathbf{U} + \left[\sum_{l=0}^{\infty} \left[\frac{1}{2} \Lambda(D, \mathbf{U}) D,D \mathbf{U} \right] + M(D, \mathbf{U}) D,D \mathbf{U} \right] \mathbf{U} + \left[(M + \frac{1}{2} \Lambda)(D, \mathbf{U}) D,D \mathbf{U} \right] \mathbf{U} \right\} \times
\int_{-h}^{h} P_m \left(\frac{x^3}{h} \right) P_n \left(\frac{x^3}{h} \right) P_l \left(\frac{x^3}{h} \right) P_k \left(\frac{x^3}{h} \right) dx^3,
\]

where \(D_3 = D^3, \) \(D^a = a^{\gamma} D_{\gamma}. \) The following expressions are derived from the above calculations [63], [64]

\[
\int_{-h}^{h} P_m \left(\frac{x^3}{h} \right) P_n \left(\frac{x^3}{h} \right) P_k \left(\frac{x^3}{h} \right) dx^3 = \frac{2h}{2k+1} \sum_{r=0}^{\min(m,n)} \alpha_{mnr} \delta_{r}^{m+n-2r}, \quad (2.42)
\]

\[
\int_{-h}^{h} P_m \left(\frac{x^3}{h} \right) P_n \left(\frac{x^3}{h} \right) P_l \left(\frac{x^3}{h} \right) P_k \left(\frac{x^3}{h} \right) dx^3 = \sum_{r=0}^{\min(m,n)} \sum_{r=0}^{\min(l,k)} \alpha_{mnr} \alpha_{lkr} \frac{\delta_{r}^{l+k-2r}}{2(l+k-2r)+1}, \quad (2.43)
\]

and

\[
P_m(x) P_n(x) = \sum_{r=0}^{\min(m,n)} \alpha_{mnr} P_{m+n-2r}(x),
\]

with

\[
\alpha_{mnr} = \frac{A_{m-r} A_r A_{n-r}}{A_{m+n-r}} \frac{2(m+n)-4r+1}{2(m+n)-2r+1}, \quad A_m = \frac{(2m-1)!!}{m!}.
\]

20
\[(2.40) \text{ and } (2.41) \text{ follow from equations } (2.37) \text{ and } (2.38) \text{ which give}\]

\[\begin{align*}
\tau^a & \equiv \Lambda(r^a \partial_r U) r^a + (B - \Lambda)(r^a \partial_r U) r^a + \Lambda(r^a \partial_r U) r^a - \\
& \quad - \Lambda(\nabla \ln h_U) r^a - (B - \Lambda)(r^a U_U) \nabla \ln h - A(r^a \nabla \ln h_U) U^a + \\
& \quad + \frac{1}{h} \Lambda(n^a U_U) r^a + \frac{1}{h} (B - \Lambda)(r^a U_U) n + \n^a,
\end{align*}\]

\[\begin{align*}
\tau^3 & \equiv \Lambda(r^a \partial_r U)n + (B - \Lambda)(n \partial_r U) r^a - \Lambda(\nabla \ln h_U) n - \\
& \quad - (B - \Lambda)(n U_U) \nabla \ln h + \frac{1}{h} \Lambda (k^a U^a) U + \frac{1}{h} B(n U_U) n + \n^3,
\end{align*}\]

\[
\nabla \ln h = \text{grad} \ln h \equiv \partial_r \ln h^r,
\]

where \(\n^a \) and \(\n^3\) follow from equations (2.42), (2.43) which give

\[\begin{align*}
\n^a & \equiv \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{r_1=0}^{\min(m,n)} \alpha_{mnr_1} \left\{ \left[\frac{1}{2} \Lambda(D^a_U \odot D^b_U) r^a + M(D^a_U \odot D^b_U) r^a - \\
& \quad - \Lambda_1(S(D^a_U \odot (ED_3 U_D)) r^a + [\Lambda(r^a D^a_U)] \odot D^a_U + [(B - \Lambda)(r^a D^a_U)] \odot D^a_U + \\
& \quad + [1(D^a_U \odot r^a)] \odot D^a_U + \frac{1}{2} \Lambda(D^a_U \odot D^a_U) r^a + M(D^a_U \odot D^a_U) n - \\
& \quad - \Lambda_2(S(D^a_U \odot (ED_3 U_D)) n + [(B - \Lambda)(r^a D^a_U)] \odot D^a_U + \\
& \quad + [A(D^a_U n)] \odot D^a_U \right\} \delta_{m+n-2r_1} + \\
& \quad + \sum_{l=0}^{\infty} \sum_{r_2=0}^{\min(l,k)} \alpha_{lcr_2} \left[\left[\frac{1}{2} \Lambda(D^a_U \odot D^b_U r^a) \right] \odot D^a_U + [M(D^a_U \odot D^b_U)] \odot D^a_U - \\
& \quad - \Lambda_3(S(D^a_U \odot (ED_3 U_D)) \odot D^a_U + \frac{1}{2} \Lambda(D^a_U \odot D^a_U) \odot D^a_U + \\
& \quad + [M(D^a_U \odot D^a_U)] \odot D^a_U - \\
& \quad - \Lambda_4(S(D^a_U \odot (ED_3 U_D)) \odot D^a_U) \right] \frac{(2k + 1) \delta_{m+n-2r_2}}{2(l + k - 2r_2) + 1} \right\},
\end{align*}\]

\[\begin{align*}
\n^3 & \equiv \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{r_1=0}^{\min(m,n)} \alpha_{mnr_1} \left\{ \left[\frac{1}{2} \Lambda(D^a_U \odot D^b_U) n + M(D^a_U \odot D^b_U) r^a - \\
& \quad - \Lambda_5(S(D^a_U \odot (ED_3 U_D)) r^a + [\Lambda(r^a D^a_U)] \odot D^a_U + \\
& \quad + [(B - \Lambda)(nD_3 U_U)] \odot D^a_U + [A(D^a_U r^a)] \odot D^a_U + \\
& \quad + (M + \frac{1}{2} \Lambda)(D^a_U \odot D^a_U) n + [(A + B)(nD_3 U_U)] \odot D^a_U \right\} \delta_{m+n-2r_1} + \\
& \quad + \sum_{l=0}^{\infty} \sum_{r_2=0}^{\min(l,k)} \alpha_{lcr_2} \left[\left[\frac{1}{2} \Lambda(D^a_U \odot D^b_U r^a) \right] \odot D^a_U + [M(D^a_U \odot D^b_U)] \odot D^a_U - \\
& \quad - \Lambda_6(S(D^a_U \odot (ED_3 U_D)) \odot D^a_U + \frac{1}{2} \Lambda(D^a_U \odot D^a_U) \odot D^a_U + \\
& \quad + [M(D^a_U \odot D^a_U)] \odot D^a_U - \\
& \quad - \Lambda_7(S(D^a_U \odot (ED_3 U_D)) \odot D^a_U) \right] \frac{(2k + 1) \delta_{m+n-2r_2}}{2(l + k - 2r_2) + 1} \right\},
\end{align*}\]
\[
+ \sum_{i=0}^{\infty} \sum_{r_2=0}^{\min(l,k)} \alpha_{ikr_2} \left[\frac{1}{2} (\Lambda(D^2 U_l \circ D^l U_l) \circ D^2 U_l + [M(D^2 U_l \circ D^l U_l)] \circ D^2 U_l - \lambda_5 [S(D^3 U_l \circ (ED^l U_l))] \circ D^2 U_l + [M + \frac{1}{2} \Lambda(D^3 U_l \circ D^3 U_l)] \circ D^3 U_l \right] \times \\
\frac{(2k + 1) \delta_{m+n-2r_2}^{l+k-2r_2}}{2(l + k - 2r_2) + 1}.
\]

\[A^{ijpq} \equiv \Lambda^{ijpq} + M(a^{iq}a^{jp} + a^{iq}a^{jp}), \]

which (2.17) is rewritten as \(\tau^{\prime i}\) and \(\tau^{\prime i}\) using \(\mathbf{e}^{\prime i}\) and \(\mathbf{e}^{\prime i}\) for positive and negative components of the tension vectors. Equations (2.40) and (2.41) are

\[\tau^{ij} \equiv (\tau^{ij})^T \]

are obtained using the following equations:

\[(k)_{\alpha\beta} \equiv \Lambda^{k}_{\alpha\beta} + 2M e_{\alpha\beta} + 2\lambda_5 h_{\alpha\beta} + N_{\alpha\beta}, \]

\[(k)_{\alpha\beta} = M e_{\alpha\beta} + 2\lambda_5 h_{\alpha\beta} + N_{\alpha\beta}, \]

\[(k)_{\alpha\beta} = 2M e_{\alpha\beta} + 2\lambda_5 h_{\alpha\beta} + N_{\alpha\beta}, \]

\[(k)_{\alpha\beta} = \Lambda^{k}_{\alpha\beta} + 2M e_{\alpha\beta} + N_{\alpha\beta}. \]

Finally, we obtain

\[\left((k)_{\tau}^{ij}, (k)_{\epsilon}^{ij}, (k)_{h}^{ij}, (k)_{N}^{ij} \right) = \left(k + \frac{1}{2} h \int_{-h}^{h} (\tau_{ij}, e_{ij}, h_{ij}, N_{ij}) P_k \left(x^3 \right) dx^3, \right) \]

where

\[\tau_{\alpha\beta} = \frac{1}{2} [\mathbf{r}_\alpha \partial_{\beta} \mathbf{U} + \mathbf{r}_\beta \partial_{\alpha} \mathbf{U} - (\mathbf{r}_\alpha \mathbf{U}) \partial_{\beta} \ln h - (\mathbf{r}_\beta \mathbf{U}) \partial_{\alpha} \ln h], \]

\[\tau_{\alpha\beta} = \frac{1}{2} [\mathbf{n} \partial_{\alpha} \mathbf{U} + \mathbf{r}_\alpha \mathbf{U} - (\mathbf{n} \mathbf{U}) \partial_{\beta} \ln h], \]

\[\epsilon_{ij} = \frac{1}{h} \left(\mathbf{n} \mathbf{U} \right), \]

\[h_{\alpha\beta} = \frac{1}{2} S [\mathbf{r}_\alpha \partial_{\beta} \mathbf{U} - \mathbf{r}_\beta \partial_{\alpha} \mathbf{U} - \mathbf{r}_\alpha \mathbf{U} \partial_{\beta} \ln h + \mathbf{r}_\beta \mathbf{U} \partial_{\alpha} \ln h], \]

\[h_{\alpha\beta} = \frac{1}{2} S [\mathbf{n} \partial_{\alpha} \mathbf{U} - \frac{1}{h} \mathbf{r}_\alpha \mathbf{U} - (\mathbf{n} \mathbf{U}) \partial_{\beta} \ln h]. \]
\[
\begin{align*}
 (k) U &= U \alpha r_\alpha + U^3 n = (k) l^\alpha + U^3 n, \\
 (k') U &= U \alpha r_\alpha + U^3 n = (k') l^\alpha + U^3 n, \\
 (k'') U &= U \alpha r_\alpha + U^3 n = (k'') l^\alpha + U^3 n,
\end{align*}
\]

\[\text{(2.46)}\]

\[
\begin{align*}
 (k') U &= (k') u_j, U_j = (k') u_j, \\
 (k'') U &= (k'') u_j, U_j = (k'') u_j, \quad j = k \sum_{m=0}^{(k+2m+1)} U_j, \quad j = k \sum_{m=0}^{(k+2m+1)} U_j.
\end{align*}
\]

\[\text{The equations (2.46) and (2.45) are used in the following sections to derive solutions.}\]

\[
\begin{align*}
 \partial_\alpha u &= (\nabla_\alpha u_\beta - b_{\alpha\beta} u_3) r^\beta + (\nabla_\alpha u_3 + b_{\alpha\beta} u^\beta) n, \\
 \nabla_\alpha u_\beta &= \partial_\alpha u_\beta - \Gamma^\lambda_{\alpha\beta} u_\lambda, \\
 \partial_\alpha r^\beta &= -\Gamma^\gamma_{\alpha\beta} r^\gamma + b^\beta_n, \\
 \Gamma^\lambda_{\alpha\beta} &= \omega - \frac{1}{2} \phi \phi \nabla_\alpha \phi \nabla_\beta \phi \nabla_\lambda \phi.
\end{align*}
\]

\[\text{Using (2.47) and (2.48) we have:}\]

\[
\begin{align*}
 e^{(k)}_{\alpha\beta} &= \frac{1}{2} (\nabla_\alpha U_\beta + \nabla_\beta U_\alpha - 2b_{\alpha\beta} U_3 - U_\alpha \partial_\beta \ln h - U_\beta \partial_\alpha \ln h), \\
 e^{(k)}_{\alpha3} &= \frac{1}{2} (\nabla_\alpha U_3 + b_{\alpha\beta} U_3 + \frac{1}{h} U_\alpha - U_3 \partial_\alpha \ln h), \\
 e^{(k)}_{33} &= \frac{1}{h} U_3, \\
 h^{(k)}_{\alpha\beta} &= \frac{1}{2} S(\nabla_\alpha U_\beta - \nabla_\beta U_\alpha - U_\beta \partial_\alpha \ln h + U_\alpha \partial_\beta \ln h), \\
 h^{(k)}_{\alpha3} &= \frac{1}{2} S(\nabla_\alpha U_3 + b_{\alpha\beta} U_3 - \frac{1}{h} U_\alpha - U_3 \partial_\alpha \ln h).
\end{align*}
\]

\[\text{(2.47) are used in the following sections}\]

\[
\begin{align*}
 m^{(k)} &= \nabla_\alpha U^\alpha - 2H U_3 - \nabla_\alpha \ln h U^\alpha + \frac{1}{h} U_3. \\
\end{align*}
\]

\[\text{(2.48)}\]

\[\text{(2.30) is used in the following sections}\]

\[
\begin{align*}
 x^3 \nabla_\alpha b^\gamma &= 0, \\
 x^3 \partial_\alpha k_1 &= 0, \\
 x^3 \partial_\alpha k_2 &= 0.
\end{align*}
\]

\[\text{(2.49)}\]
\(\nabla_i U^i \approx \begin{cases}
abla_\alpha U^\beta - b^\alpha_\beta U^\gamma, & \text{for } i = \alpha, j = \beta, \\
abla_\alpha U^3 + b^\alpha_\beta U^\beta, & \text{for } i = \alpha, j = 3, \\
abla_3 U^\alpha - b^3_\beta U^\beta, & \text{for } i = 3, j = \alpha, \\
abla_3 U^3, & \text{for } i = j = 3;
\end{cases} \) \hspace{1cm} (2.50)

\(\nabla_i U_j \approx \begin{cases}
abla_\alpha U^\beta - b^\alpha_\beta U^3, & \text{for } i = \alpha, j = \beta, \\
abla_\alpha U_3 + b^\alpha_\beta U_\beta, & \text{for } i = \alpha, j = 3, \\
abla_3 U^\alpha - b^3_\beta U^\beta, & \text{for } i = 3, j = \alpha, \\
abla_3 U_3, & \text{for } i = j = 3.
\end{cases} \) \hspace{1cm} (2.51)

\(\hat{A}_{ijpq} := \Lambda a_{ij}a_{pq} + (M - \lambda S)a_{ip}a_{jq} + (M + \lambda S)a_{ip}a_{jp}. \)

\(D_{i}^{(k)} U = \left(k + \frac{1}{2} \right) \frac{1}{h} \int_{-h}^{h} \nabla_i U^m R_m P_k \left(\frac{x^3}{h} \right) dx^3 \approx \right. \]

\(= \left[\left(k + \frac{1}{2} \right) \frac{1}{h} \int_{-h}^{h} \nabla_i U^m P_k \left(\frac{x^3}{h} \right) dx^3 \right] r_m = \nabla_i^{(k)} m r_m = \nabla_i^{(k)} r^p. \)

\(\hat{N}_{ij}^{(k)}, \quad k = 0, 1, \ldots \) are rectangular matrices in which the elements are defined as

\(\hat{N}_{ij}^{(k)} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{r_1=0}^{\text{min}(m,n)} \alpha_{mnr_1} \left\{ \left[\frac{1}{2} \Lambda (\hat{V}_j^{(m)} U_p \circ \hat{V}_j^{(n)} U_p) a^{\alpha} \beta \right. \right. \]

\(+ M (\hat{V}_j^{(m)} U_p \circ \hat{V}_j^{(n)} U_p) - \lambda_S (\hat{V}_j^{(m)} U_p \circ (E \hat{V}_j^{(n)} U_p)) \right) \right. \]

\(+ (\Lambda \hat{V}_j^{(m)} U_j) \circ \hat{V}_j^{(n)} U^\beta + \]

\(+ [(B - \Lambda) \hat{V}_j^{(m)} U^\alpha] \circ \hat{V}_j^{(n)} U^\beta + (A \hat{V}_j^{(m)} U^\alpha) \circ \hat{V}_j^{(n)} U^\beta \right] \delta_k^{m+n-2r_1} + \]

\(+ \sum_{l=0}^{\text{min}(m,n)} \sum_{r_2=0}^{\infty} \alpha_{lkr_2} \left[\frac{1}{2} \Lambda (\hat{V}_j^{(m)} U_p \circ \hat{V}_j^{(n)} U_p)] \circ \hat{V}_j^{(l)} U^\beta \right. \]

\(+ (M \hat{V}_j^{(m)} U_p \circ \hat{V}_j^{(n)} U_p)] \circ \hat{V}_j^{(l)} U^\beta - \]

\(- \lambda_S [S (\hat{V}_j^{(m)} U_p \circ (E \hat{V}_j^{(n)} U_p))] \circ \hat{V}_j^{(l)} U^\beta \right\}] \frac{(2k+1)e^{i(k-l-2r_2) \frac{2(l+k-2r_2)}{1}}} {2(l+k-2r_2)+1}, \) \hspace{1cm} (2.52)

\(\hat{N}_{i3}^{(k)} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{r_1=0}^{\text{min}(m,n)} \alpha_{mnr_1} \left\{ M (\hat{V}_j^{(m)} U_p \circ \hat{V}_3 U_p) - \right. \]

\(- \lambda_S (\hat{V}_j^{(m)} U_p \circ (E \hat{V}_3 U_p)) + (\Lambda \hat{V}_j^{(m)} U_j) \circ \hat{V}_3 U^\beta + \]

\(+ \lambda_S (\hat{V}_j^{(m)} U_p \circ (E \hat{V}_3 U_p)) + (\Lambda \hat{V}_j^{(m)} U_j) \circ \hat{V}_3 U^\beta + \)

\(+ [(B - \Lambda) \hat{V}_j^{(m)} U^3] \circ \hat{V}_3 U^\beta + (A \hat{V}_j^{(m)} U^3) \circ \hat{V}_3 U^\beta \right] \delta_k^{m+n-2r_1} + \]

\(+ \sum_{l=0}^{\text{min}(m,n)} \sum_{r_2=0}^{\infty} \alpha_{lkr_2} \left[\frac{1}{2} \Lambda (\hat{V}_j^{(m)} U_p \circ \hat{V}_3 U_p)] \circ \hat{V}_3^{(l)} U^\beta \right. \]

\(+ (M \hat{V}_j^{(m)} U_p \circ \hat{V}_3 U_p)] \circ \hat{V}_3^{(l)} U^\beta - \]

\(- \lambda_S [S (\hat{V}_j^{(m)} U_p \circ (E \hat{V}_3 U_p))] \circ \hat{V}_3^{(l)} U^\beta \right\}] \frac{(2k+1)e^{i(k-l-2r_2) \frac{2(l+k-2r_2)}{1}}} {2(l+k-2r_2)+1}, \) \hspace{1cm} (2.52)
\[
\begin{align*}
+ \ (B - \Lambda)^{(m)} V_j U_3^{(n)} + (A V_\alpha^{(m)} U_3^{(n)} V_\beta U_3^{(n)}) \delta_{k+n-2r_1}^{m+n} \\
+ \sum_{l=0}^{\infty} \sum_{r_2=0}^{\min(l,k)} \alpha_{l,k,r_2} \left[\frac{1}{2} \Lambda(V_j U_3^{(m)} V_j U_3^{(n)}) V_\alpha U_3^{(l)} + \lambda_5 [S(V_j U_3^{(m)} V_j U_3^{(n)}) V_\alpha U_3^{(l)}] \right] \frac{(2k+1) \delta_{m+n-2r_2}^{l+k-2r_2}}{2(l+k-2r_2)+1} \right).
\end{align*}
\] (253)

\[
N^{3\alpha} = N^{3r_2}, \quad \text{where} \quad \sum_{k=0}^{N} a_k N^{k-3} \text{ is the polynomial of degree} \quad N^{3} - \text{the polynomial in the } \mathbf{N} \text{ variables}. \quad \text{and} \quad \mathbf{N}^{33} = \mathbf{N}^{3n} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{r_1=0}^{\min(m,n)} \alpha_{m,n,r_1} \left[\frac{1}{2} \Lambda(V_j U_3^{(m)} V_j U_3^{(n)}) V_\alpha U_3^{(l)} + \lambda_5 [S(V_j U_3^{(m)} V_j U_3^{(n)}) V_\alpha U_3^{(l)}] \right] \frac{(2k+1) \delta_{m+n-2r_2}^{l+k-2r_2}}{2(l+k-2r_2)+1} \right). \quad (255)
\]

The vector corresponding to \(\nabla \) is denoted \(\nabla \), and its components are given by:

\[
\nabla_i U_{j}^{(k)} := \left(k \frac{1}{2} \right) \frac{1}{h} \int_{-h}^{h} \nabla_i U_{j} P_m \left(\frac{x^3}{h} \right) dx^3. \quad (256)
\]

The vector \(\nabla \) is defined as follows:

\[
\begin{align*}
\nabla_{\alpha} U_\beta &= \nabla_{\alpha} U_\beta - b_{\alpha\beta} U_3^{(k)} - \partial_\alpha \ln h U_\beta^{(k)} \\
\nabla_{\alpha} U_3 &= \partial_{\alpha} U_3^{(k)} + b_{\alpha} U_3^{(k)} - \partial_\alpha \ln h U_3^{(k)} \\
\nabla_3 U_\alpha &= \frac{1}{h} U_\alpha^{(k)} + b_{\alpha} U_3^{(k)} \\
\nabla_3 U_3 &= \frac{1}{h} U_3^{(k)}. \quad (257)
\end{align*}
\]
\(N_{a\beta} = \text{(k)} N_{\gamma \alpha \gamma \alpha \beta} \), \(N_{a\alpha} = \text{(k)} N_{\gamma \alpha} \),
\(N_{3\alpha} = \text{(k)} N_{3\gamma \alpha \gamma}, \) \(N_{33} = \text{(k)} N_{33}, \) \(k = 0, 1, \ldots \)

(2.44)

(2.28)

(2.47)

(2.48)

\(A\nabla_{\alpha}(\nabla^{\alpha} (U^{\beta}) + (B - \Lambda)\nabla_{\alpha}(\nabla^{\beta} (U^{\alpha}) + \Lambda\nabla^{\beta}(\nabla_{\alpha} (U^{\alpha}) + (M_{\beta} + M_{NL} + F_{\beta}) = 0, \)
\(A\nabla_{\alpha}(\nabla^{\alpha} (U_{3}) + (M_{\beta} + M_{NL} + F_{3}) = 0, \) \(k = 0, 1, \ldots \)

\((2.58) \)

\(M^{2} = (M^{T}, M^{T}) = \text{symmetric and positive definite} \)

\(\text{(k)} \)

\(\text{symmetric and positive definite} \)

\(\text{(k)} \)

\((2.59) \)

\((2.60) \)

\(\text{(k)} \)

\(\text{(k)} \)

\(\text{(k)} \)

\(\text{(n)} \)

\(\text{(k)} \)

\(\text{(n)} \)

\(\text{(k)} \)
სადაც $M^{(k)}_{NL}$ და $M^{(k)}_{NL}$ სიჯიშყვისათვის გამოიყენება (2.59) დონიერი ვორონოვილი. სადაც

N^{ij} ფუნქციით $N^{ij} - N^{ij}$ სიჯიშყვს.

(258), (261) სიჯიშყები პერიოდული განლაგებით შესაძლებელი არის არაამოცილებელი დაპირამდე ხშირ განლაგებით არამოცილებელი განლაგებებით. თანხამდელი ა. წამალი ქართულ დამატებით გამოიყენება, შეიძლება დროებითი გამოთვლის ქრონოლოგია. თუმცა v^i და v^i გამოყენებით ქრონოლოგია აქტიური კითხვა და იგივე წინა პირობები.

$$U(x^1, x^2, x^3) = \sum_{k=0}^{N} (k) U(x^1, x^2) P_k \left(\frac{x^3}{h}\right),$$

სადაც N – მნიშვნელობა დაწყებისთვის არაგრანტული მნიშვნელობა. ჯგუფი ზრდით მოდულური გამოთვლის ქრონოლოგია. რომ

$$(k) U = 0, \text{ როდესაც } k > N, \text{ იმა არა} (k) \alpha = (k) U = (k) U = 0, \text{ როდესაც } k > N.$$

გარკვეული აქვს (258), ან (261) სიჯიშყებმა ინარჩუნებენ პირობათმ 6N + 6 ღამიურება. ამისთვის ინარჩუნების გამოყენებით განლაგებით სიჯიშყა 6N + 6 ღამიურებით.

$$A \nabla \alpha (\nabla \alpha U + (B - \Lambda) \nabla \alpha (\nabla \alpha U + \Lambda \nabla \beta (\nabla \alpha U + M + (k) \beta + (k) \beta + M_{NL} + (k) F = 0,$$

$$A \nabla (\nabla U + (k) U + (k) M + (k) M_{NL} + (k) F = 3 = 0, \quad k = 0, 1, ..., N.$$

(262) სიჯიშჟა რეალური კვალი ურთიერთობი არგუმენტული სიჯიშტმა შეთავაზით.

§3. სიიმაგანტებილობის გამოყენებით სიჯიშჟა არგუმენტული სიჯიშტომ სიჯიშტმა შეთავაზით.

. წამალი გამოეცა პერიოდული განლაგები სიიმაგანტებილობის თანხამდელი სიჯიშტომ სიჯიშტომ შეთავაზით.

განსაზღვრა 2k-ში ნათლიანი სიჯიშჟა კუთხე და ის ქრონოლოგია იურიდიური დაფაგტურული სიჯიშტომ სიჯიშტმა. აქ სიჯიშტთ სიიმაგანტებილობის საგანგებო სიჯიშტომ სიჯიშტმა სიჯიშტმა (1.32)-ის თანხამდე ჰქონია სიჯიშტმა

$$\frac{1}{\sqrt{g}} A^i \partial_g (\sqrt{g} g^{a \beta} \partial_\beta T) + \frac{1}{\sqrt{g}} A^i \partial_\beta (\sqrt{g} \partial_\beta T) - \alpha ST = -W.$$

(3.1)
(3.2) \(\partial_3 \sqrt{g} \equiv -2H \sqrt{a} \).

(3.3) \(A'(\nabla^2 T + \partial_{x^0} T - 2H \partial_3 T) - \alpha ST = -W \).

(3.4) \(T(x^1, x^2, \pm h) = T^\pm(x^1, x^2) \).

(3.5) \(\partial_3 T|_{x^2 = \pm h} = \mp Q^\pm(x^1, x^2) \).

(3.6) \((T, W)(x^1, x^2, x^3) = \sum_{k=0}^{\infty} \frac{(k)}{h} \left(T, W \right) P_k \left(\frac{x^3}{h} \right) \).

(3.7) \(\int_{-h}^{h} (T, W) P_k \left(\frac{x^3}{h} \right) dx^3 \).

(3.8) \(\partial_3 f = \sum_{k=0}^{\infty} \frac{2k + 1}{h} \frac{(k+1)}{f} + \frac{(k+3)}{f + \cdots} P_k \left(\frac{x^3}{h} \right) \).

(3.9) \(\partial_{33} f = \sum_{k=0}^{\infty} \frac{1}{h^2} \frac{(k)}{f} P_k \left(\frac{x^3}{h} \right) = \sum_{k=0}^{\infty} \frac{1}{h^2} \frac{(k)}{f} P_k \left(\frac{x^3}{h} \right) \).

(3.10) \(f = (2k + 1) \left(\frac{(k+1)}{f} + \frac{(k+3)}{f + \cdots} \right) = (2k + 1) \left(\frac{(k+2)}{f} + \frac{(k+4)}{f + \cdots} \right) + \frac{(k+4)}{f} \left(\frac{(k+6)}{f + \cdots} \right) \cdots \).
\[= (2k + 1)[(2k + 3)^{(k+2)}f + 2(2k + 5)^{(k+4)}f + 3(2k + 7)^{(k+6)}f + \ldots] = \\
= (2k + 1) \sum_{p=1}^{\infty} p(2k + 2p + 1)^{(k+2p)}f, \]

\[D_{33}^2 f := \left(k + \frac{1}{2} \right) \frac{1}{h} \int_{-h}^{h} \partial_{33}^2 f P_k \left(\frac{x^3}{h} \right) dx^3 = \frac{2k + 1}{h^2} \sum_{m=1}^{\infty} m(2k + 2p + 1)^{(k+2m)}f. \] (3.7)

The expression (3.7) simplifies to

\[\left(k + \frac{1}{2} \right) \frac{1}{h} P_k \left(\frac{x^3}{h} \right), \quad k = 0, 1, \ldots \]

Therefore, the operator \(x^3 \)-like \(-h\)-like \(h\)-like is given by (2.40) and (3.7) for \([-1, 1] \) and \([-h, h]\). The expression (3.7) implies that the \(\alpha S T = -W \) with \(k = 0, 1, \ldots \)

\[A^t \left\{ \nabla^2 (k+1) f + \frac{2k + 1}{h^2} \sum_{m=1}^{(k+2m)} m(2k + 2m + 1)^{(k+2m)}f \right\} - \alpha S T = -W, \quad k = 0, 1, \ldots \] (3.8)

Substituting (3.8) yields

\[A^t \left\{ \nabla^2 (k+1) f + \frac{2k + 1}{h^2} \left[(k+2)(k+2) f + (k+4)(k+4) f + \ldots \right] \right\} - \alpha S T = -W, \quad k = 0, 1, \ldots \] (3.9)

\[A^t \left\{ \nabla^2 (k+1) f + \frac{2k + 1}{h^2} \left[2k + 3 \left(\frac{k+2}{k+3} f + \frac{k+4}{k+5} f + \frac{k+6}{k+7} f + \ldots \right) \right] \right\} - \alpha S T = -W, \quad k = 0, 1, \ldots \] (3.10)

Therefore, we have

\[P_k(1) = 1, \quad P_k(-1) = (-1)^k, \]
\[T^+ = T + \frac{1}{4} (T + T^+ + T^- - T^- + \ldots); \quad T^- = T - \frac{1}{4} (T + T^+ + T^- - T^- + \ldots); \]
\[(3.1) \]

(3.11) The equation for the generation and absorption densities is:

\[\frac{1}{2} (T^+ + (-1)^k T^-) = \ldots + \frac{1}{4} (k-2) (k+2) T^+ + \ldots; \]
\[\frac{1}{2} (T^+ + (-1)^k T^-) = \ldots + \frac{1}{4} (k-1) (k+3) T^- + \ldots; \]

\[(3.12) \]

(3.13) For the densities at the boundary condition:

\[\frac{1}{2} (T^+ + (-1)^k T^-) = \ldots + \frac{1}{4} \left(T^+ + \frac{1}{2} (-1)^k T^- \right) - \frac{1}{2} \left(T^+ + \frac{1}{2} (-1)^k T^- \right) + \ldots; \]

\[(3.13) \]

(3.14) For the densities at the boundary condition:

\[\frac{1}{2} (T^+ + (-1)^k T^-) = \ldots + \frac{1}{4} \left(T^+ + \frac{k+2}{2} (-1)^k T^- \right) - \frac{1}{2} \left(T^+ + \frac{k+2}{2} (-1)^k T^- \right) + \ldots; \]

\[(3.14) \]

(3.15) For the densities at the boundary condition:

\[\left(\partial T \right)_{x^2 = k} = \frac{1}{h} \left(1 + \frac{3}{4} (T + T^+ + \ldots) + 5 (T + T^+ + \ldots) + \ldots \right) = \frac{1}{2} \sum_{k=1}^{\infty} k \left(k+1 \right) \frac{h}{T}. \]

\[(3.15) \]

(3.16) For the densities at the boundary condition:

\[(k + 2m) (k + 2m + 1) T^+ + (k + 2m + 2) (k + 2m + 3) T^- + \ldots = \]
\[\left[-h \left(Q^+ + (-1)^k Q^- \right) - \frac{1}{4} \left(k + 2m - 2 \right) (k + 2m - 1) T^+ + \right. \]
\[\left. + \frac{1}{4} \left(k + 2m - 4 \right) (k + 2m - 3) T^- + \ldots \right] = \]
\[(3.16) \]

(3.17) For the densities at the boundary condition:

\[(k + 2m - 1) (k + 2m + 1) T^+ + (k + 2m + 2) (k + 2m + 3) T^- + \ldots = \]
\[\left[-h \left(Q^+ + (-1)^k Q^- \right) - \frac{1}{4} \left(k + 2m - 3 \right) (k + 2m - 2) T^+ + \right. \]
\[\left. + \frac{1}{4} \left(k + 2m - 5 \right) (k + 2m - 4) T^- + \ldots \right] = \]

\[m = 0, 1, \ldots; \quad \text{if} \quad h \to \infty, \quad \text{then} \quad \frac{1}{T} \to 0, \quad \text{if} \quad k > 0. \]
(3.14) と (3.15) から (3.11) の右辺を導き、導出される

\[A^t \left\{ \nabla^2 (k) - \frac{2k+1}{h^2} \left[(2k+3) \left(\frac{1}{2} (T^+ + (-1)^k T^-) - \left(\frac{k}{T} + \frac{(k-2)}{T} + \ldots \right) \right) + \right. \\
+ (2k+7) \left(\frac{1}{2} (T^+ + (-1)^k T^-) - \left(\frac{k+2}{T} + \frac{k}{T} + \ldots \right) \right) + \\
\left. + \ldots -2hH \left(\frac{1}{2} (T^+ - (-1)^k T^-) - \left(\frac{k-1}{T} + \frac{(k-3)}{T} + \ldots \right) \right) \right\} - \right. \\
- \alpha S (k) T = - \left(\frac{k}{k} \right), \quad k = 0, 1, \ldots \]

(3.16) と (3.17) より (3.12) の右辺を導き、導出される

\[A^t \left\{ \nabla^2 (k) - \frac{2k+1}{h^2} \left[\sum_{m=0}^{\infty} \sum_{p=0}^{\infty} \left(2k+4m+3 \left(\frac{1}{2} (T^+ + (-1)^k T^-) - \left(\frac{k+2m-2p}{T} \right) \right) \right) - \right. \\
- 2hH \left(\frac{1}{2} (T^+ - (-1)^k T^-) - \left(\frac{k-2p-1}{T} \right) \right) \right\} - \alpha S (k) T = - \left(\frac{k}{k} \right). \]

(3.19)

\[A^t \left\{ \nabla^2 (k) - \frac{2k+1}{h^2} \left[\sum_{m=0}^{\infty} \sum_{p=1}^{\infty} \left(\frac{m(2k+2m+1)}{(k+2m)(k+2m+1)} - \frac{(m-1)(2k+2m-1)}{k+2m+2+\delta_{m1}(k+2m-1)} \right) \right. \\
\times \left(-h(Q^+ + (-1)^k Q^-) - (k+2m-2p)(k+2m-2p+1) \left(\frac{k+2m-2p}{T} \right) \right) - \right. \\
- 2hH \left(\frac{1}{(k+2m-1)(k+2m)} - \frac{1}{(k+2m-3)(k+2m-2)} \right) \times \\
\left. \times \left(-h(Q^+ - (-1)^k Q^-) - (k+2m-2p-1) \left(\frac{k+2m-2p-1}{T} \right) \right) \right\} - \alpha S (k) T = - \left(\frac{k}{k} \right), \quad k = 0, 1, \ldots \]
(3.20)

\[T^\pm = \sum_{k=0}^{N+2} (\pm 1)^k \frac{\partial T}{\partial x}^k, \quad (\partial_3 T)^\pm = \frac{1}{2h} \sum_{k=0}^{N+2} (\pm 1)^k (k+1) \frac{\partial T}{\partial x}^k. \]

(3.21)

\[A^t \left\{ \nabla^2 \frac{(k+1)}{h^2} \left[\sum_{m=0}^{N-k} \sum_{n=0}^{k} (2k + 4m + 3) \left(\frac{1}{2} (T^+ + (-1)^k T^-) - \frac{(k+2m-2n)}{T} \right) \right] + \right. \\
+ 2hH \sum_{p=1}^{k-2p+1} \frac{(k-2p+1)}{T} - hH(T^+ - (-1)^k T^-) \left\} - \alpha S^k \frac{k}{T} = -\vec{W}, \quad k = 0, 1, ..., N; \]

(3.22)

\[A^t \left\{ \nabla^2 \frac{(k+1)}{h^2} \sum_{m=1}^{N-k} \sum_{n=1}^{k+2m} \left[\left(\frac{m(2k+2m+1)}{(k+2m)(k+2m+1)} \right) - \frac{(k+2m-2+\delta_{k0})(k+2m-1)}{\delta_{m1}} \right) \right. \times \left. \left(-h(Q^+ + (-1)^k Q^-) - (k+2m-2n)(k+2m-2n+1) \frac{(k+2m-2n)}{T} \right) \right. \right. \]
\[- 2hH \left(\frac{1}{(k+2m-1)(k+2m)} - \frac{\delta_{m1}}{(k+2m-3)(k+2m-2)} \right) \times \left. \left(-h(Q^+ + (-1)^k Q^-) - (k+2m-2n-1)(k+2m-2n+1) \frac{(k+2m-2n)}{T} \right) \right. \right. \]
\[- \alpha S^k \frac{k}{T} = -\vec{W}, \quad k = 0, 1, ..., N, \]

(3.23)

\[\nabla^2 \Theta - \frac{1}{h^2} \Theta = -M^t, \]
საშობ მათემატიკური ჰარმონია შეიძლება გამოიყენოს როგორც ფიზიკური პრობლემების გაჭრილობის გზა. მათემატიკური ახასიათებები კვლევა და ამ იდეაზე არაფერი უამრავი რეზულტატები შეიძლება გამოიყენოს სოციალურ ჰარმონია შექმნის გზა.

\[
\Theta = Lt + h^2 L^{-1} M^t,
\]

საშობ \(t = (t_1, ..., t_{N+2})^T, L = (2N+2)(2N+2) \) მატრიცა, \(\Pi \), \(\Pi_1 \), \(\Pi_2 \) და \(\Pi_3 \) განსაზღვრული ფუნქციები, შეგვიძლია \(t_k, k = 0, 1, ..., 2N+2 \) ფუნქციები ყველაზე განსაზღვრული შიდა პირობები

\[
\nabla^2 t_k - \frac{a_k}{h^2} t_k = 0, \quad k = 0, 1, ..., 2N+2,
\]

საშობ \(a_k \) - ლანგრენის საპორტირები პირობები.

\[
T_k, k = 0, 1, ..., N \text{ მათემატიკური არქიმეტრია, რომლის გამოყოფა განთავსებულია ფუნქცია.
}

\[
T = \sum_{k=0}^{N+2} T_k P_k \left(\frac{x^3}{h} \right), \quad (3.24)
\]

მათემატიკური პრინციპები შეიძლება გამოსხოთ და გამოყენებული მიერ. თანამედროვე მწერები, რომლებიც მძივებიან მოქმედებებზე, შეიძლება გამოვიყო პრობლემები შექმნილი სამართალ.

\[
\begin{align*}
\partial_x T + k^+(T - T^+_c) &= 0, \quad \text{როდესაც } x^3 = h, \\
\partial_x T - k^-(T - T^-_c) &= 0, \quad \text{როდესაც } x^3 = -h, \quad (3.25)
\end{align*}
\]

საშობ \(T^+_c = (t^+_c, t^+_c)^T, t^+_c \) და \(t^-_c \) შეიძლება გამოვიყო სწორი და შეიძლება პრობლემები შექმნილი გამოსხოთ სამართალთა შექმნილი.

\[
k^\pm = \begin{pmatrix} k^+ & 0 \\ 0 & k^- \end{pmatrix},
\]

\(k^+, k^- \) შემდეგ და შეიძლება პრობლემებში გამოიყენოს არამატემატიური გამოთვლის შესაძლო. განკუთვნილი წინარი მათემატიკური პრობლემები და შეიძლება გამოიყენოს ამ იდეაზე არმავი გამომდინარე.

\[
A^t \begin{align*}
\nabla^2 \left(\frac{2k+1}{h^2} \right) \left((k+2)(k+3) T + (k+4)(k+5) T + \right. \\
+ (k+6)(k+7) T + ... - k(k+1)(T + T + ...) - \\
- 4k H (T + T + ... \right) - \alpha S T = -W, \quad k = 0, 1, ...
\end{align*}
\]

33
თუ (3.26) - ზე ვფრაზო შერჩევით (3.13) და (3.15) ფორმულები, საითაც შეგვიძგით განონტოლოგიური (3.25) სისტემის ჭრივში, მიღებულ შედეგზე უფროსია განხილვისათვის სისტემა.

$$A^1 \left\{ \frac{\nabla^2 (k)}{T} + \frac{2k+1}{2h^2} \left[h(k^+T^+ + (-1)^k k^-T^-) + (k - 2)(k - 1) \frac{T}{T} + (k - 4)(k - 3) \frac{T}{T} + \ldots + k(k+1) \left(\frac{1}{2} (T^+ + (-1)^k T^-) - \frac{(k-2)}{T} + \frac{(k-4)}{T} + \ldots \right) + 4kh \left(\frac{1}{2} (T^+ - (-1)^k T^-) - \frac{(k-1)}{T} + \frac{(k-3)}{T} + \ldots \right) \right] \right\} - \alpha S T = - W, \quad k = 0, 1, \ldots,$$

თუ (3.27) სისტემა შეფარიშდებოდა პირველს $N + 1$ ფაქტორიკებს და შეიძლოთ T^+ და T^- ფუნქციის სიღრმეში რიცხობა.

$$T^\pm = \sum_{k=0}^{N} (\pm 1)^k \frac{T}{T},$$

შესაბამო, მაშინ მიგოდებით (3.23) ფუნქცია დამკვიდრებათ სისტემა 2$N + 2$ ფაქტორიკებს და ამგვანგავი ამასთან. T, $k = 0, 1, \ldots, N$ სიღრმეში სისტემით პირველად გამოყენება შეუძლია T ფუნქცია დაფარვა.

$$T = \sum_{k=0}^{N} \frac{(k)}{T} P_k \left(\frac{x^3}{h} \right).$$

სამშობის პირობები ამ შეფარიში გარდა პირველად შეარჩევა, სამშობის, რიცხობა ან საგანს.

(k), $k = 0, 1, \ldots, N$ სიღრმეში გარემო და ზედა ენერგიის γ სიღრმეში შეიძლოს მოთხოვნით თუ პირობები

1) პირველი ზედაზარი $\frac{(m)}{T} = F_1 (M)$, $m = 0, 1, \ldots, N$, $M \in \gamma,$
2) მდგომ ზედაზარი $\frac{(m)}{T} = F_1 (M)$, $m = 0, 1, \ldots, N$, $M \in \gamma,$
3) შეფარიშ ზედაზარი $\frac{(m)}{T} + k(T - T_\gamma) = 0$, $m = 0, 1, \ldots, N$, $\gamma - \gamma,$

სადაც $\gamma - \gamma$ ნახევრის გარე დონეშია, სიღრმეში ხარჯებზე შეიძლო მოთხოვნით თუ მათ (3.28) იმპლიციური პირობები.

საღირს შეგიძგით (3.27) ფორმულები პირველად გამოყენებენ ფორმულებისთვის პირობებით, როლად განმარტების განხილვამდე გამოყენებული $H = 0$, ამიტომ ∇^2 თეხროგრაფიულ შეფარიშთან Δ განხილვით არ არის მიღებულ.

γ ფუნქციული ფუნქციები, მიღებული სიღრმეში შეფარიშდებოდა $T^{(0)}$ და $T^{(1)}$

$$T^{(0)} = \frac{1}{2h} \int_{-h}^{h} T dx^3, \quad T^{(1)} = \frac{3}{2h^2} \int_{-h}^{h} T x^3 dx^3.$$
1) ხარჯულობა სისტემით პროგრამულ გამოქვეყნებულ სასურსათო პროგრამულ შესრულებამ (3.21)

\[A'^2^T = \left(\frac{3}{h^2} \right) - A'^2 \left(-\frac{3}{h^2} T^+ + T^- \right) + \frac{1}{h} H(T^+ - T^-) - \left(\frac{1}{h} \right), \]

\[A'^2^T = \left(\frac{15}{h^2} A'^2 + \frac{6}{h} A'^2 H T \right) = A'^2 \left(-\frac{15}{h^2} T^+ + T^- + \frac{3}{h} H(T^+ - T^-) \right) - \left(\frac{1}{h} \right). \]

(3.29)

\[H = 0 \] და (3.29) იმდგომ გამოიყენება იმ დამოკიდებულება განსაზღვრის უამრავ თაობის (3.29)

\[A'^2^T = \left(\frac{3}{h^2} A'^2 + \frac{6}{h} A'^2 H T \right) = -\frac{3}{h^2} A'^2 (T^+ + T^-) - \left(\frac{1}{h} \right), \]

(3.30)

\[A'^2^T = \left(\frac{15}{h^2} A'^2 + \frac{6}{h} A'^2 H T \right) = -\frac{15}{h^2} A'^2 (T^+ - T^-) - \left(\frac{1}{h} \right). \]

(3.31)

2) პროგრამული გამოქვეყნებულ მოთხოვნა სისტემით პროგრამულ შესრულებამ (3.22)

\[A'^2^T = \left(\frac{3}{h^2} A'^2 + \frac{6}{h} A'^2 H T \right) = -\frac{3}{h^2} A'^2 (T^+ + T^-) - \left(\frac{1}{h} \right), \]

(3.32)

\[A'^2^T = \left(\frac{15}{h^2} A'^2 + \frac{6}{h} A'^2 H T \right) = -\frac{15}{h^2} A'^2 (T^+ - T^-) - \left(\frac{1}{h} \right). \]

(3.33)

3) ხარჯულობა სისტემით გამოქვეყნებულ მოთხოვნა შესრულებამ (3.25) პროგრამით შესრულების უამრავ თაობის

\[A'^2^T = \left(\frac{3}{h^2} A'^2 + \frac{6}{h} A'^2 H T \right) = -\frac{3}{h^2} A'^2 (T^+ + T^-) - \left(\frac{1}{h} \right), \]

(3.34)

\[A'^2^T = \left(\frac{15}{h^2} A'^2 + \frac{6}{h} A'^2 H T \right) = -\frac{15}{h^2} A'^2 (T^+ - T^-) - \left(\frac{1}{h} \right). \]

(3.35)

\[\epsilon = 2h A'^2 (k^+ + k^-), \quad \epsilon^* = 2h A'^2 (k^+ - k^-), \quad A_0' = 2h A'^2, \quad \epsilon_0 = \epsilon + \frac{2}{h} A', \quad \frac{1}{h} \epsilon^* = 2h \frac{1}{h} \epsilon^*, \]

\[T_e = \frac{1}{2} (T_e^+ + T_e^-), \quad T_e^* = \frac{1}{2} (T_e^+ - T_e^-), \quad \alpha^* = 2h \alpha. \]
(3.35) სიტყვები დიფერენციულ ქსიდანგილი არ გამოიყენება. თუ პირველი სახელით ჰელიუმის დონიდან უმოსი მოიხსენით, რომლის დინებით სიტყვები გამოიყენება იმ დროს, როდესაც ზოგიერთ ფაქტი, როგორც რომ, T და T^* სოლფენინგს მიიღება

\[
A_0 \Delta T^{(0)} - \left(\varepsilon + \alpha^* S \right) T^{(0)} = -\varepsilon T_2 - W^{(0)},
\]

\[
A_0 \Delta T^{(1)} - 3(\varepsilon_0 + \alpha^* S) T^{(1)} = -3\varepsilon T_2 - W^{(1)}.
\]

§4. ჰომოჰომოგენური პრობლემის გამოთვლა

კასარმე. გამოცდე ჰომოჰომოგენური პრობლემის. შორის, რომლითაც მყოფ ჰომოჰომოგენური სიტყვები. ქართული სახელმწიფო კოლოსს ჰომოჰომოგენური სიტყვები ქართული სახელმწიფო გამოთვლის პრობლემით მიღებული იქნა. იქნათ რეაქტიური გამოთვლის ზელანდია (შრ. (2.28))

\[
\partial_t \phi^{(k)}_{ij} + \alpha \ln h^{(k)}_{ij} - \frac{1}{h^{(k)}} F^{(k)}_{ij} = 0 \quad (k = 0, 1, \ldots, N), \quad \omega - \varepsilon_n,
\]

(4.1)

შერჩეული რეაქტიური გამოთვლის ზელანდია (შრ. (2.44))

\[
\partial_t \phi^{(k)}_{ij} = \Lambda \varepsilon_{m,n} \phi^{(k)}_{mn} + 2M \varepsilon_{m,n} \phi^{(k)}_{mn} - 2\lambda_5 \phi^{(k)}_{ij} + N \phi^{(k)}_{ij}, \quad k = 0, 1, \ldots, N,
\]

(4.2)

გამოთვლის ძალიან

\[
\phi^{(k)}_{ij} = \frac{1}{2} \left(\partial_t U^{(k)}_{ij} + \partial_t U^{(k)}_{ji} - \partial_t U^{(k)}_{ii} - \partial_t U^{(k)}_{jj} \right) + \frac{1}{h^{(k)}} \left(\partial_t U^{(k)}_{ii} + \partial_t U^{(k)}_{jj} - \partial_t U^{(k)}_{ij} \right),
\]

(4.3)

\[
\phi^{(k)}_{ij} = \frac{1}{2} \left(\partial_t U^{(k)}_{ij} + \partial_t U^{(k)}_{ji} - \partial_t U^{(k)}_{ii} - \partial_t U^{(k)}_{jj} \right) + \frac{1}{h^{(k)}} \left(\partial_t U^{(k)}_{ii} + \partial_t U^{(k)}_{jj} - \partial_t U^{(k)}_{ij} \right),
\]

(4.4)

\[
\phi^{(k)}_{ij} = \frac{1}{2} \left(\partial_t U^{(k)}_{ij} + \partial_t U^{(k)}_{ji} - \partial_t U^{(k)}_{ii} - \partial_t U^{(k)}_{jj} \right) + \frac{1}{h^{(k)}} \left(\partial_t U^{(k)}_{ii} + \partial_t U^{(k)}_{jj} - \partial_t U^{(k)}_{ij} \right),
\]

(4.5)

\[
N_{ij}^{(k)} = \sum_{m=0}^{N} \sum_{n=0}^{N} \sum_{r_1=0}^{\min(m,n)} \alpha_{m,n,r_1} \left\{ \left[\frac{1}{2} A_{ipq} \left(D_p^{(m)} U_q^{(n)} \right) \right] S_{k^{m+n-2r_1}} + \right.
\]

\[
+ \left. \left(A_{ipq} D_p^{(m)} U_q^{(n)} \right) - \lambda_5 \left(S_{k^{m+n-2r_1}} + \right) \right. \]

\[
+ \left. \frac{1}{2} \sum_{l=0}^{N} \sum_{r_2=0}^{\min(l,k)} \alpha_{l,r_2} \left[\left(A_{ipq} D_p^{(m)} U_q^{(n)} \right) \right] \right. \]

\[
\left. \left. \left(2k + 1 \right) \xi^{k+n+2r_1}_{m+n+2r_1} \right] \right\},
\]

(4.6)
\[
D_j^{(k)} U = \frac{2k + 1}{2h} \int_{-h}^{h} \partial_j U P_k \left(\frac{x^3}{h} \right) dx^3 = \begin{cases} \partial \alpha\ U - \partial \ln h \ U, & j = \alpha, \\
\frac{1}{h} U, & j = 3,
\end{cases}
\]

\[
U_j = (2k + 1) \sum_{m=0}^{\infty} \frac{(k+2m+1)}{U_{j+k} j + (2k + 1) \sum_{m=1}^{\infty} U_{j+k+2m}}. \tag{4.3'}
\]

(41)-\text{th} equation \(\tau = \alpha_j, \) \(\tau = 3_j \) satisfy the equation (2.29) for \(\gamma_j. \)

Define \(\bar{U} = (\bar{U}^{(0)}_1, \bar{U}^{(0)}_2, \bar{U}^{(0)}_3, ..., \bar{U}^{(N)}_1, \bar{U}^{(N)}_2, \bar{U}^{(N)}_3) = \sum_{m=0}^{\infty} \bar{U}^{(m)} j \bar{e}_j. \)

Also, \(\bar{U} = (\bar{U}^{(0)}_1, \bar{U}^{(0)}_2, \bar{U}^{(0)}_3, ..., \bar{U}^{(m)}_1, \bar{U}^{(m)}_2, \bar{U}^{(m)}_3) = \sum_{m=0}^{\infty} \bar{U}^{(m)}_j \bar{e}_j. \)

\[
\tau_l = \tau_l \bar{e}_l = \tau_l \bar{e}_j = \tau_j \bar{a}_l \bar{e}_j.
\]

Define the system \(\bar{U} = (\bar{U}^{(0)}_1, \bar{U}^{(0)}_2, \bar{U}^{(0)}_3, ..., \bar{U}^{(m)}_1, \bar{U}^{(m)}_2, \bar{U}^{(m)}_3) = \sum_{m=0}^{\infty} \bar{U}^{(m)}_j \bar{e}_j. \)

\[
\begin{aligned}
&\left\{ - \sum_{k=0}^{N} \frac{1}{2k + 1} \left[h \partial_{(k)} \left[A_{\alpha j \alpha}^{(k)} e_p (U) - 2 \lambda_{5} h \alpha_j (U) + \frac{1}{h} \alpha_j (U) \right] + \\
&+ \partial \ln h \left[A_{\alpha j \alpha}^{(k)} e_p (U) - 2 \lambda_{5} h \alpha_j (U) + \frac{1}{h} \alpha_j (U) \right] - \\
&- \left[A_{\alpha j \alpha}^{(k)} e_p (U) - 2 \lambda_{5} h \alpha_j (U) + \frac{1}{h} \alpha_j (U) \right] \right\} \bar{e}_j = \\
&= \sum_{k=0}^{N} \bar{U}^{(k)}_j \bar{e}_j - \gamma_0, \\
&\sum_{k=0}^{N} \bar{U}^{(k)}_j \bar{e}_j = 0 - \gamma_0,
\end{aligned}
\tag{4.4}
\]

\[
\bar{U} = \sum_{k=0}^{N} \bar{U}^{(k)}_j \bar{e}_j = \bar{g} = \sum_{k=0}^{N} \bar{g}^{(k)}_j \bar{e}_j = \gamma - \gamma_0.
\]

\[
\begin{aligned}
\gamma &\bar{U} + \gamma_0 = \gamma, \quad \gamma_j + \gamma_0 = 0, \\
\bar{g} = \bar{g}^{(0)} \bar{g}^{(0)} + \bar{g}^{(1)} \bar{g}^{(1)} + \bar{g}^{(2)} \bar{g}^{(2)} - \text{whatever} \quad \gamma_1 + \gamma_0 = 0.
\end{aligned}
\]

\[
\bar{I}^{(k)}_i = \frac{h}{2k + 1} \bar{F}^{(k)}_i.
\]
\[
\bar{F} = (2k + 1) \left(\frac{1}{F} + \frac{1}{F} + \ldots \right), \quad \bar{F} = (k + 1) \left(\frac{1}{F} + \frac{1}{F} + \ldots \right).
\]

Consider the operator \(h(x_1, x_2) \in C^1(\Omega) \). Then, \(V(0) \) is given by

\[
W(\omega) = \left\{ v = \begin{pmatrix} v_0 \\ v_1 \\ v_2 \\ \ldots \\ v_{N-1} \\ v_{N} \end{pmatrix} \in \left(W^{2+m,p}(\omega) \right)^{2 \times 1} \right\}^{3N+3},
\]

\[
p > 1 + \delta_0, \quad v = 0, \quad \gamma_0 = 0,
\]

\[
\delta_0 = \begin{cases} 1, & \text{if } m = 0, \text{ or } \omega \text{ is a regular set}, \\
0, & \text{if } m > 0.
\end{cases}
\]

Consider the operator \(\tilde{A}(\omega) \) of the form

\[
(a) \quad v \in V(0) \subset W(\omega) \Rightarrow A(v) := -\sum_{k=0}^{N} \frac{1}{2k + 1} \left\{ h \partial_\alpha \left[A_{\alpha j p q} \frac{1}{e} p_q(v) - 2\lambda_5 h \frac{1}{e} j \right] + \partial_\alpha h \left[A_{\alpha j p q} \frac{1}{e} p_q(v) - 2\lambda_5 h \frac{1}{e} j \right] + \frac{1}{e} \left[A_{3 j p q} \frac{1}{e} p_q(v) - 2\lambda_5 h \frac{1}{e} j \right] \cdot \gamma_1 \right\} \in \left(W^{m,p}(\omega) \right)^{2 \times 1}, \quad p > 1 + \delta_0.
\]

\[
(b) \quad v \in V(0) \subset W(\omega) \Rightarrow B(v) := \sum_{k=0}^{N} \left(A_{\alpha j p q} \frac{1}{e} p_q(v) - 2\lambda_5 h \frac{1}{e} j \right) \cdot l_\alpha \frac{1}{e} j \in \left(W^{m,p}(\omega) \right)^{2 \times 1}, \quad p > 1 + \delta_0.
\]

\[
A(v) := (A(v), B(v)).
\]

Consider the operator \(A'(0) = (A'(0), B'(0)) \) for the set \(v \in W(\omega) \) of regular points of the form

\[
A'(0)v = \left(-\sum_{k=0}^{N} \frac{1}{2k + 1} \left\{ h \partial_\alpha \left[A_{\alpha j p q} \frac{1}{e} p_q(v) - 2\lambda_5 h \frac{1}{e} j \right] + \partial_\alpha h \left[A_{\alpha j p q} \frac{1}{e} p_q(v) - 2\lambda_5 h \frac{1}{e} j \right] + \frac{1}{e} \left[A_{3 j p q} \frac{1}{e} p_q(v) - 2\lambda_5 h \frac{1}{e} j \right] \cdot \gamma_1 \right\} \right)_j + \sum_{k=0}^{N} \left(A_{\alpha j p q} \frac{1}{e} p_q(v) - 2\lambda_5 h \frac{1}{e} j \right) \cdot l_\alpha \frac{1}{e} j \in \left(W^{m,p}(\omega) \right)^{2 \times 1} \times \left(W^{m,p}(\omega) \right)^{2 \times 1}, \quad p > 1 + \delta_0.
\]
\[A(v) - A(0) = -\sum_{k=0}^{N} \frac{1}{2k+1} \left\{ h \partial_{a} \left[A_{\alpha p q} \left(x_{k} \right) - 2 \lambda_{s} \frac{h}{2} \alpha_{j}(v) \right] + \right. \]
\[+ \partial_{a} h \left[A_{\alpha p q} \left(x_{k} \right) - 2 \lambda_{s} \frac{h}{2} \alpha_{j}(v) \right] - \left[A_{3 p q} \left(x_{k} \right) - 2 \lambda_{s} \frac{h}{2} \alpha_{j}(v) \right] \right\} k_{j} + o\left(\|v\|_{W(\omega)} \right) \left((W^{m, p}(\omega))^{2x1} \right)^{3N+3} - \xi, \]
\[B(v) - B(0) = \sum_{k=0}^{N} \left[A_{\alpha p q} \left(x_{k} \right) - 2 \lambda_{s} \frac{h}{2} \alpha_{j}(v) \right] k_{j} + 0\left(\|v\|_{W(\omega)} \right) \left((W^{m, p}(\gamma_{1}))^{2x1} \right)^{3N+3} - \xi, \]

where the solution satisfies the following equations:

\[A'(0) = (f, g) \iff \begin{cases} A'(0) U = f, \\ B'(0) U = g. \end{cases} \tag{45} \]

Then (45) implies the following system of differential equations under certain conditions:

\[\begin{cases} -\sum_{k=0}^{N} \frac{1}{2k+1} \left\{ \partial_{a} \left(h \alpha_{j}(v) \right) + \partial_{a} h \left(\frac{k}{2} \alpha_{j}(v) - P \alpha_{j}(v) - P \alpha_{j}(v) \right) - \frac{k}{2} \alpha_{j}(v) \right\} k_{j} = \sum_{k=0}^{N} f_{j} \frac{k}{2} k_{j}, \\ \sum_{k=0}^{N} P \alpha_{j}(v) k_{j} = \sum_{k=0}^{N} g_{j} \frac{k}{2} k_{j} \gamma_{1} - \xi, \end{cases} \tag{45'} \]

So that

\[\frac{k}{2} \alpha_{j}(v) = \frac{k}{2} \alpha_{j}(v) \delta_{ij} + 2 M \frac{k}{2} \alpha_{j}(v) - 2 \lambda_{s} \frac{k}{2} \alpha_{j}(v). \tag{46} \]

Therefore, the system of equations (45) yields the following solution under certain conditions:

\[\text{End of Page 39.} \]
\[B(N, v) = L(v) \quad \text{for any } v \in W(\omega) - \text{ terms,} \]

\[B(N, v) := \sum_{k=0}^{N} \frac{1}{2k+1} \int_{\Omega} \left\{ (A_{ij}^{(k)} N^N_{ij}(U))^{T} \epsilon_{ij}(v) + 2(M_{ij}^{(k)} N^N_{ij}(U))^{T} \epsilon_{ij}(v) - 2 \lambda_{ij}^{(k)} N^N_{ij}(U) \right\} dx, \]

\[L(v) := \sum_{k=0}^{N} \left\{ \int_{\Omega} f^{(k)} j^{(k)} v^{(k)} dx + \frac{1}{2k+1} \int_{\Omega} h^{(k)} (P_{ij}^{(k)} - P_{ij}^{(k)})^{T} v^{(k)} \gamma dx \right\}. \]

\[-\sum_{k=0}^{N} \int_{\Omega} h U^{(k)} \left\{ \partial_{\alpha}(h P_{ij}^{(k)} U) + \partial_{\alpha} h \left(P_{ij}^{(k)} U - P_{ij}^{(k)} U \right) - \right\}^{T} v^{(k)} j^{(k)} dx = \sum_{k=0}^{N} \int_{\Omega} f^{(k)} j^{(k)} v^{(k)} dx. \]

(2.28) \text{ and } (4.3') \text{ follow similarly.}

\[\sum_{k=0}^{N} \left(P_{ij}^{(k)} - P_{ij}^{(k)} U \right)^{T} v^{(k)} j^{(k)} = \]

\[= \sum_{k=0}^{N} \left[k P_{ij}^{(k)} (2k+1)(P_{ij}^{(k-2)} + P_{ij}^{(k-4)} + \ldots) \right]^{T} v^{(k)} j^{(k)} = \]

\[= \sum_{k=0}^{N} \left(P_{ij}^{(k)} U \right)^{T} \left[k v^{(k)} j^{(k+2)} + (2k+1)(v^{(k+4)} j^{(k+4)} + \ldots) \right] = \]

\[= \sum_{k=0}^{N} \left(P_{ij}^{(k)} N^N_{ij}(U) \right)^{T} v^{(k)} j^{(k)}. \]

\[\sum_{k=0}^{N} \left(P_{ij}^{(k)} N^N_{ij}(U) \right)^{T} v^{(k)} j^{(k)} = \sum_{k=0}^{N} (2k+1) \left(P_{ij}^{(k-1)} N^N_{ij}(U) \right)^{T} v^{(k)} j^{(k)} = \]

\[= \sum_{k=0}^{N} (2k+1) \left(P_{ij}^{(k+1)} N^N_{ij}(U) \right)^{T} v^{(k+1)} j^{(k+1)} + \ldots = \]

\[= \sum_{k=0}^{N} \left(P_{ij}^{(k)} N^N_{ij}(U) \right)^{T} v^{(k)} j^{(k)}. \]
გამოყენებით განწყობის ოდენობით, გადმოთხოვნა (4.5') ამოცანის სამეტყველო პრინდებით ო ორივე გადმოთხოვნა (4.9) ო 4.10) გადმოთხოვნით, შემდეგია

$$\int \sum_{k=0}^{N} \frac{h}{2k+1} \left\{ \left(\begin{pmatrix} k \\ P \end{pmatrix} \sigma_j(U) \right)^T \left(\partial_\alpha \left(\begin{pmatrix} k \\ v \end{pmatrix} \right)_j - \partial_\alpha \ln h \left(\begin{pmatrix} k'' \\ v \end{pmatrix} \right)_j \right) + \left(\begin{pmatrix} k \\ P \end{pmatrix} \sigma_j(U) \right)^T \frac{1}{h} \left(\begin{pmatrix} k \\ v \end{pmatrix} \right)_j \right\} dx =$$

$$= \sum_{k=0}^{N} \left\{ \int \left(\begin{pmatrix} k \\ P \end{pmatrix} \sigma_j(U) \right)^T \left(\begin{pmatrix} k \\ v \end{pmatrix} \right)_j + \frac{1}{2k+1} \int h \left(\begin{pmatrix} k \\ P \end{pmatrix} \sigma_j(U) \right)^T \left(\begin{pmatrix} k \\ v \end{pmatrix} \right)_j \eta dx \right\} .$$

განლაგებით აქ ფუნქციების პრინდების სხვადასხვა მართვა (4.6)-ს გადმოთხოვნებით გადმოთხოვნა

$$\int \sum_{k=0}^{N} \frac{h}{2k+1} \left\{ \left(\begin{pmatrix} k \\ P \end{pmatrix} \sigma_j(U) \right)^T \left(\partial_\alpha \left(\begin{pmatrix} k \\ v \end{pmatrix} \right)_j - \partial_\alpha \ln h \left(\begin{pmatrix} k'' \\ v \end{pmatrix} \right)_j \right) + \left(\begin{pmatrix} k \\ P \end{pmatrix} \sigma_j(U) \right)^T \frac{1}{h} \left(\begin{pmatrix} k \\ v \end{pmatrix} \right)_j \right\} dx =$$

$$= \sum_{k=0}^{N} \frac{1}{2k+1} \int \left\{ \left(\begin{pmatrix} k \\ e \end{pmatrix} \sigma_j(U) \right)^T \left(\partial_\alpha \left(\begin{pmatrix} k \\ v \end{pmatrix} \right)_j + \frac{1}{h} \left(\begin{pmatrix} k \\ v \end{pmatrix} \right)_3 - \partial_\alpha \ln h \left(\begin{pmatrix} k' \\ v \end{pmatrix} \right)_\alpha \right) +

+2 \left(\begin{pmatrix} k \\ e \sigma_j(U) \right)^T \left(\partial_\alpha \left(\begin{pmatrix} k \\ v \end{pmatrix} \right)_\beta - \partial_\beta \ln h \left(\begin{pmatrix} k'' \\ v \end{pmatrix} \right)_\alpha \right) +

+2 \left(\begin{pmatrix} k \\ e \sigma_j(U) \right)^T \left(\partial_\alpha \left(\begin{pmatrix} k \\ v \end{pmatrix} \right)_3 - \partial_\alpha \ln h \left(\begin{pmatrix} k'' \\ v \end{pmatrix} \right)_3 + \frac{1}{h} \left(\begin{pmatrix} k \\ v \end{pmatrix} \right)_\alpha \right) +

+2 \left(\begin{pmatrix} k \\ e \sigma_j(U) \right)^T \left(\partial_\alpha \left(\begin{pmatrix} k \\ v \end{pmatrix} \right)_3 - \partial_\alpha \ln h \left(\begin{pmatrix} k'' \\ v \end{pmatrix} \right)_3 - \frac{1}{h} \left(\begin{pmatrix} k \\ v \end{pmatrix} \right)_\alpha \right) \right\} dx,$$

საფუძვლად (4.2) წინადადების გადმოთხოვნის გადმოთხოვნა ოთხმოდებით დასლიაქვს განმტაცებელი თხოვნებით. ამოცანის სხვადასხვა ნაწილებით გადმოთხოვნა გადმოთხოვნა გახდებული უნივერსალური სიმრავლით v ∈ W(ω) და v |_γ = 0 ულუროვების გამოწვევით (4.5')-ს პრინდებ იახორცვება

$$\sum_{k=0}^{N} \frac{1}{2k+1} \int h \left\{ \left(\begin{pmatrix} k \\ e \sigma_j(U) \right)^T \left(\begin{pmatrix} k \\ e \end{pmatrix} q_j(v) + 2 \left(\begin{pmatrix} k \\ e \sigma_j(U) \right)^T \left(\begin{pmatrix} k \\ e \end{pmatrix} i_j(v) \right)-

-2 \lambda s \left(\begin{pmatrix} k \\ h \sigma_j(U) \right)_j h \left(\begin{pmatrix} k \\ i_j(v) \right) \right) \right\} dx = \sum_{k=0}^{N} \int \left(\begin{pmatrix} k \\ f \right)^T \left(\begin{pmatrix} k \\ v \right)_j \right) dx \quad \forall v \in W(\omega), v = 0 \quad \text{ჩ. 3}.$$
\[(H^1(\omega))^{2\times 1}\)^{3N+3} をもつ \(v\) の ノルムは \(\|v\|_{l,1,\omega} \equiv \left\{ \int_{\omega} \left(\sum_{k=0}^{N} \left[\left(\frac{(k)}{v} \right)^T \frac{(k)}{v} i + \left(\frac{(k)}{\partial_\omega} \frac{(k)}{v} \right)^T \frac{(k)}{\partial_\omega} \frac{(k)}{v} i \right] \right) dx \right\}^{\frac{1}{2}}.\]

\[B(u,v) = \sum_{k=0}^{N} \frac{1}{2k+1} \int_{\omega} \left(\left(\Lambda \frac{(k)}{\partial_\omega} \right)^T \frac{(k)}{\partial_\omega} \right) \frac{(k)}{\partial_\omega} (v) + 2(M \frac{(k)}{\partial_\omega} \frac{(k)}{\partial_\omega} v)^T \frac{(k)}{\partial_\omega} (v) - 2\lambda \frac{(k)}{\partial_\omega} \frac{(k)}{\partial_\omega} \right) dx \]

\[\|v\|_{l,1,\omega} \leq k_1 \|u\|_{l,1,\omega} \|v\|_{l,1,\omega}.\] (4.12)

\[B(u,v) \leq \sum_{k=0}^{N} \frac{3}{2} \int_{\omega} \left(\left(\frac{(k)}{v} \right)^T \frac{(k)}{v} i dx \right)^{\frac{1}{2}} \left(\int_{\omega} \left(\frac{(k)}{\partial_\omega} \frac{(k)}{v} \right)^T \frac{(k)}{\partial_\omega} \frac{(k)}{v} i dx \right)^{\frac{1}{2}} \] (4.13)

\[V(\Omega_h) := \{ v = (v_1, v_2, v_3) \in ((H^1(\Omega_h))^{2\times 1})^3, \quad v = 0, \quad v \times (-h, h), \quad \text{where} \quad \gamma_0 > 0 \} \]
where \(\mathbf{v} \in \mathbf{V}(\Omega^k) \). \(e_{ij}(\mathbf{v}) \) is the bilinear form defined as \(e_{ij}(\mathbf{v}) = \sum_{k=0}^{N} \frac{e^{(k)}}{h^k} P_k \left(\frac{e_i}{h} \right) \),

satisfying \(\frac{e^{(k)}}{h^k} \mathbf{v} \) of (4.2) achieving the smoothest possible.

Using the duality between the norms of the solution and test functions,

\[
\| \mathbf{v} \|_{1, \Omega^k}^2 = \int_{\Omega} \left\{ \sum_{k=0}^{N} \frac{2}{2k+1} \left[\left(\frac{e^{(k)}}{h} \right)^T \left(\frac{e^{(k)}}{h} \right) + \left(\frac{\partial_{x} \mathbf{v}}{h} \right) - \frac{\partial_{x} \mathbf{v}}{h} \right] \right\} \, dx.
\]

(4.15)

Let us consider the following inequality

\[
(a + b)^2 \geq (1 - \delta) a^2 - \frac{1}{\delta} b^2 \quad \text{for all} \quad \delta > 0 - \text{holds},
\]

and

\[
\sum_{k=0}^{N} \int_{\Omega} \left(\frac{\partial_{x} \mathbf{v}}{h} \right)^T \left(\frac{\partial_{x} \mathbf{v}}{h} \right) dx \geq \sum_{k=0}^{N} \left\{ \int_{\Omega} \frac{1 - \delta}{2} \left(\frac{\partial_{x} \mathbf{v}}{h} \right)^T \frac{\partial_{x} \mathbf{v}}{h} dx - \int_{\Omega} \frac{1 - \delta}{\delta} \left(\frac{\partial_{x} \mathbf{v}}{h} \right)^2 \left(\frac{\partial_{x} \mathbf{v}}{h} \right) dx \right\}.
\]

(4.16)

For the case where \(0 < \delta < 1 \) (see, for example, eq. (1.3)) the inequality (4.16) can be further improved

\[
\sum_{k=0}^{N} \left(\int_{\Omega} \frac{1}{h^2} \left(\frac{\partial_{x} \mathbf{v}}{h} \right)^T \frac{\partial_{x} \mathbf{v}}{h} dx - \int_{\Omega} \frac{1 - \delta}{\delta} \left(\frac{\partial_{x} \mathbf{v}}{h} \right)^2 \left(\frac{\partial_{x} \mathbf{v}}{h} \right) dx \right) > 0.
\]

(4.17)

Then (a) holds in the \(C^1 \) sense for the problem of the stress, where (4.15)-(4.17) are obtained. Here, \(\delta \) is chosen such that \(k_0 \) is the smallest positive, which

\[
\| \mathbf{v} \|_{1, \Omega^k} \geq k_0^2 \sum_{k=0}^{N} \left[\left(\frac{e^{(k)}}{h} \right)^T \left(\frac{e^{(k)}}{h} \right) + \left(\frac{\partial_{x} \mathbf{v}}{h} \right) \left(\frac{\partial_{x} \mathbf{v}}{h} \right) \right] \, dx.
\]

(4.18)

\[
\int_{\Omega^k} (e_{ij}(\mathbf{v}))^T e_{ij}(\mathbf{v}) \, d\Omega = \int_{\Omega} 2h \left(\sum_{k=0}^{N} \frac{1}{2k+1} \left(\frac{e^{(k)}}{h} \right)^T \left(\frac{e^{(k)}}{h} \right) \right) dx \leq 2 \max_{(x_1, x_2) \in \Omega} \left(\sum_{k=0}^{N} \left(\frac{e^{(k)}}{h} \right)^T \left(\frac{e^{(k)}}{h} \right) \right) dx.
\]

(4.19)

(4.18) and (4.19) are obtained in (4.14) by inserting the right-hand side of (4.13) into (4.14).
\(\lambda_s < 0, \ \mu_1 > 0, \ \lambda_1 - \frac{\alpha_2 \rho_2}{\rho} + \frac{2}{3} \mu_1 > 0, \ \text{det} \ M > 0, \ \text{det} \left(\Lambda + \frac{2}{3} M \right) > 0. \quad (4.20) \)

Then, under conditions (4.20) on \(M \), there exists \(h_{ij} \) in a vicinity \(V \) of \(h_{ij} \), such that

\[
W(e_{ij}, h_{ij}) \geq \delta \left\{ (e_{ij})^T e_{ij} + h_{ij} h_{ij} \right\}. \quad (4.20')
\]

and

\[
k_2 \|v\|_{1,\omega}^2 \leq B(v, v).
\]

Let us consider the family of solutions \(B(u, v) \) of the system (4.11) for every \(u \) in a vicinity of \((\lambda_1, \mu_1) \). The system (4.11) for \(e_{ij} \) has a unique solution \(e_{ij} \) in a vicinity of \((\lambda_1, \mu_1) \). Let \(f \) be an arbitrary function \(f \) in a vicinity of \((\lambda_1, \mu_1) \). Then

\[
V = \left\{ v \in (H^1(\omega))^{2 \times 1}, \ v = 0 \ \text{on} \ \partial \omega \right\}
\]

is a subspace of \(V \) with the norm \(\|v\|_{1,\omega} \). Then

\[
B(U, v) = L(v), \quad \text{for} \ v \in V - \{0\},
\]

\(B(U, v) \) and \(L(v) \) are continuous functions (4.7) and (4.8) on a compact subset of \(V \). Further, we have

\[
J(\bar{U}) = \inf_{v \in V} J(v), \quad \text{and} \quad J(v) = \frac{1}{2} B(v, v) - L(v).
\]

Finally, for a fixed \(\omega \), the system (4.11) has a unique solution \(e_{ij} \) in a vicinity of \((\lambda_1, \mu_1) \) for every \(u \) in a vicinity of \((\lambda_1, \mu_1) \). Then

\[
J(\bar{U}) = \inf_{v \in V} J(v), \quad \text{and} \quad J(v) = \frac{1}{2} B(v, v) - L(v).
\]

\[44\]
რაქმი $\gamma = \gamma$ და γ და $\overline{\gamma}$ არიან სამაგამო სიმრავლეები, შეძლო სურვილი ამოხლოვდა სიმრავლის სიმრავლის ხელმისაწვდომობი წყალმადა. მაგალითი, სამაგამო სიმრავლე წყალმადი [67]

თერიორზე 2. იმოქმედა, რომ არის როგორ R2-ზე C^{2+m}, სადაც m არის დინამიკური მაგვარი სიმრავლი, რომლის γ სიმრავლი. $f \in (W^{m,p}(\omega))^{2 \times 1})^{3N+3}$, $p > 1$, შეძლო გაყოფით-გაშლილა სისტემა მოდიფიცირებული სიმრავლი არხინა $\overline{U} \in (H_0^1(\omega))^{2 \times 1})^{3N+3}$ არხის დეტერმინაცია ($(W^{2+m,p}(\omega))^{2 \times 1})^{3N+3}$ სიმრავლი და გამოყოფილ ამოხლოვდა.

$$- \sum_{k=0}^{N} \frac{1}{2k+1} \left\{ h \partial_a \left[A_{\alpha j p q}^{(k)} \frac{\epsilon}{\epsilon} \frac{N}{pq} (U) - 2 \lambda_s \frac{h}{h} \alpha_j (U) \right] + \right.$$
$$+ \partial_a h \left[A_{\alpha j p q}^{(k)} \frac{\epsilon}{\epsilon} \frac{N}{pq} (U) - 2 \lambda_s \frac{h}{h} \alpha_j (U) \right] - \right.$$
$$- \left[A_{\alpha j p q}^{(k)} \frac{\epsilon}{\epsilon} \frac{N}{pq} (U) - 2 \lambda_s \frac{h}{h} \alpha_j (U) \right] \right\} \hat{e}_j = f, (W^{m,p}(\omega))^{2 \times 1})^{3N+3} - \omega.$$

რხით გამოყოფილი არხიის ქმედებათ დეტერმინაცია $\overline{U} : \omega \rightarrow \mathbb{R}^2$, რეჟიმი გამოყოფილ არხით.

$$\left\{ \begin{array}{l} \Lambda^{(N)} (U) = f \quad \omega - \omega, \\ \overline{U} = 0 \quad \partial \omega - \partial \omega, \end{array} \right. \quad \text{(4.21)}$$

საჯარო სასინგამო გეომეტრია A მოხლებში შეიძლება გამოყოფილი რეჟიმით.

$$\Lambda^{(N)} (U) = - \sum_{k=0}^{N} \frac{1}{2k+1} \left\{ h \partial_a \left[A_{\alpha j p q}^{(k)} \frac{\epsilon}{\epsilon} \frac{N}{pq} (U) - 2 \lambda_s \frac{h}{h} \alpha_j (U) + \overline{N} \alpha_j (U) \right] + \right.$$
$$+ \partial_a h \left[A_{\alpha j p q}^{(k)} \frac{\epsilon}{\epsilon} \frac{N}{pq} (U) - 2 \lambda_s \frac{h}{h} \alpha_j (U) + \overline{N} \alpha_j (U) \right] - \right.$$
$$- \left[A_{\alpha j p q}^{(k)} \frac{\epsilon}{\epsilon} \frac{N}{pq} (U) - 2 \lambda_s \frac{h}{h} \alpha_j (U) \right] \right\} \hat{e}_j. \quad \text{(4.22)}$$

სასინგამო გეომეტრიის შედეგები [31], [32], [44]

თერიორობა 3. იმოქმედა, რომ არის შესაძლებელი თითოეული რეჟიმი R2-ზე C^{2+m} სიმრავლი γ სიმრავლით, სადაც m არის დინამიკური მაგვარი სიმრავლი. დეტერმინაცია, რეჟიმი ფეხბურთრის მერქანდაობა სიმრავლი γ

$$(k) \quad i_j (U) = \Lambda^{(k)} \left(m \right) \delta_{ij} + 2 \lambda_s \frac{h}{h} \alpha_j (U) - 2 \lambda_s \frac{h}{h} \alpha_j (U) \right\} \hat{e}_j, \quad k = 0, 1, ..., N;$$

მისი სხვადასხვა ძირითადი $p > 1 + \delta_{0m}$ რეჟიმებით, სადაც

$$\delta_{0m} = \left\{ \begin{array}{l} 1, \quad \text{თუ} \quad m = 0, \\ 0, \quad \text{თუ} \quad m > 0, \end{array} \right. \quad \text{(4.23)}$$

45
$
abla_{k}^{\text{man}}$ სივრცე პირველ ტერმინი $P_{n}^{	ext{m}} \left((W^{m,p}(\omega))^{2 \times 1} \right)^{3N+3}$ სივრცე და ბუდობის პირველ ტერმინი U_{2} შედგენი სივრცე

$$V_{n}^{	ext{m}}(\omega) := \left\{ v \in (W^{2+m,p}(\omega))^{2 \times 1} \right\}^{3N+3}; \quad v = 0, \gamma - \text{გვ}
$$

მიღწევა, რომ გარნირი $f \in P_{n}^{	ext{m}}$-საფრთხე (4.21) საბრძოლო პირობებით აქვს შესაძლებელი გარეთ ანბანტინურად $U \in U_{2}$. ლადავაური გვარი $((W^{m+1,p}(\omega))^{2 \times 1})^{3N+3}$ სივრცე, როდესაც $p > 1 + \varepsilon_{0}$, ხოლო $\gamma - \text{გვ}$-მა გამოთვლილი, ბიურად განმარტება გამოიყენება. ხოლო A_{n}-ები გამოიყენება ანალიტიკური მეთოდით. A, რომლითაც გვარი (4.22) ჩამოწერილია ანთობი $((W^{2+m,p}(\omega))^{2 \times 1})^{3N+3}$ სივრცე და ფუნქციური დომენის გამოყენებით. გარდა სხვა განათლებებში გარეთ შემოკლებული პერიოდი, თვალსაზრისი და სახელმწიფო (ნb(4.3)) შესაძლო ანთობა ველზე (ჯ. ჰოლ. შენაკად 4-ზე). მასთან არაგვარ, ან უკანააგვარ შესაძლო განათება ნევროზი (4.3)

ქვემოთ, რომ $U = 0$ ბუდობაზე $N = 0$-ას შესაძლო ანთობაა. გამოყენებით ალგებრული სისტემის შეძენით ფორმულა $V_{n}^{	ext{m}}(\omega) \times ((W^{m,p}(\omega))^{2 \times 1})^{3N+3}$ სივრცე 0-ის სივრცეში [31]. $A(0)$ ნევროზული პირობა გამოიყენება ნიუმბრა $V_{n}^{	ext{m}}(\omega)$ და $((W^{m,p}(\omega))^{2 \times 1})^{3N+3}$ სივრცე შორის მეოთხე მეოთხე შეთხოვება.

$A(0) U = f$

ჯამვად, ფორმულა რომ $N = N$

$$\sum_{k=0}^{N} \frac{1}{2k+1} \left\{ \nabla_{k}^{\text{man}} \left[A_{j\text{sp}}^{(k)} \left(U^{N}_{n} \right) \right] - \left[A_{j\text{sp}}^{(k)} \left(U^{N}_{n} \right) \right] \right\} = f,$$

$U = 0, \gamma - \text{გვ}

ჯ. ჰოლ. $A(0)$ ჩამოწერილი ან უკანააგვარ შესაძლო განათება ნევროზი შორის მეოთხე მეოთხე შეთხოვება. გარდა სხვა მეოთხე მეოთხე შეთხოვება შეიძლება გამოყენება ნევროზული პირობა 20-ზე. გარდა სხვა განათებებში გარეთ შემოკლებული პერიოდი, თვალსაზრისი და სახელმწიფო (ნb(4.3)) შესაძლო ანთობა ველზე (ჯ. ჰოლ. შენაკად 4-ზე).
§5. სასწავლო პროცესითვის კონტროლიდან დასახლება. ფუნქციონალური თუთხის პრობელექტოლოგითი და სფერონთული გარემიმაგრები

ფუნქციი, \(D \) ისთვის არის სიმნათქვამი, ორგზადად ფუნქციონალური თუთხის და ფუნქციონალურ გარემიქნავად ჯგუფია. თუმცა \(\Gamma \) ისთვის \(D \) არის სიმნათქვამი. ფასეფიქსის სინგლად \(\Gamma \) ლურჯი ხასიათია, რომ ისთვის \(D \) ფუნქციონალური თუთხის და ფუნქციონალურ გარემიქნი. ამისა სამედიცინურ პროცესით ცხოვრობს სიმნათქვამ ჯგუფთან გარემიქნავად \(\Gamma \) გზა და გაბრძოლი ბრძოლული აღნიშნულები (110, გ.32-41).

ჟილიართობა 2.62 ფუნქცია სითხეში (\(M_{j}\,_{NL} = 0 \)) ფუნქციონალური \(\mathbb{U} \in C^2(D) \cap C^1(\overline{D}) \) არის სითხეში. კომპლექსური წარმოდგენით ქვემდება სასწავლო პრობელექტოლოგით აღმოჩენა 1.

\[
\mathbb{U}\big|_{\Gamma} = \varphi \quad (k = 0,1,\ldots, N),
\]

არჩეული ნაწარმები

\[
(\varphi', \varphi^\prime)_{|\Gamma} = (\varphi', \varphi^\prime) \quad (k = 0,1,\ldots, N);
\]

არჩეული II.

\[
\mathbb{P}(l) = \varphi, \quad \mathbb{P}'(l) = \left(\mathbb{P}(l), \mathbb{P}'(l)\right)^T,
\]

არჩეული ნაწარმები

\[
\mathbb{P}(l_1) = \varphi_1, \quad \mathbb{P}(l_2) = \varphi_2, \quad \mathbb{P}(l_3) = \varphi_3, \quad \varphi_j = (\varphi_j', \varphi_j^\prime)^T.
\]

სხვა \(\mathbb{P}(l_1), \mathbb{P}(l_2), \mathbb{P}(l_3) \) და \(\mathbb{P}'(l_1), \mathbb{P}'(l_2), \mathbb{P}'(l_3) \) შესაძლებლობა \(\mathbb{P}'(l) \) და \(\mathbb{P}''(l) \) მოცემული 1, s- და n მომუშაობების პრობელექტოლოგით, s- γას ბრძოლას მოწყობით, n - ღმერთი ბრძოლით მოწყობით

\[
n = 1 \times s.
\]

შემდგომ შემონახული ფორმულები

\[
\mathbb{P}(l) = \mathbb{P}_k l^k \mathbf{r}^i = \mathbb{P}_k^i l_k \mathbf{r}^i = \mathbb{P}_k^i l_k \
\]

და (2.32) 2.33 ფორმულების საფუძველზე გარემიქნავად

\[
\mathbb{P}(l) = \Lambda(r^\prime \partial_r U)l + (B - \Lambda)(\partial_r U)r^\prime + A(lr^\prime) \partial_r U - \Lambda(\nabla \ln r U)l - (B - \Lambda)(\partial_\mathbf{n} U) \nabla \ln h - A(\nabla \ln h U) \frac{1}{h} \Lambda(n U)l + \frac{1}{h}(B - \Lambda)(\partial_\mathbf{n} U)n,
\]

ხასიათი

\[
\mathbb{P}(l) = \Lambda(r^\prime \partial_r U) + 2M \left(\partial_\mathbf{n} U \right) - \Lambda(\nabla \ln h U) - 2M(l U) \partial_\mathbf{n} U + \frac{1}{h} \Lambda(n U),
\]

47
\(P^{(k)}_{(s)} = A \left(\frac{\partial U^{(k)}}{\partial l} \right) + (B - \Lambda) \left(\frac{\partial U^{(k)}}{\partial s} \right) - A \frac{\partial \ln h}{\partial l} \left(s^{(k)} \right) - (B - \Lambda) \frac{\partial \ln h}{\partial s} \left(l^{(k)} U^{(k)} \right), \) (5.3)

\(P^{(k)}_{(n)} = A \left(n \frac{\partial U^{(k)}}{\partial l} \right) - A \frac{\partial \ln h}{\partial l} \left(n^{(k)} U^{(k)} \right) + \frac{1}{h} (B - \Lambda) (l^{(k)} U^{(k)}). \) (5.4)

\(\frac{\partial l}{\partial t} = k_1 n + k_2 s, \quad \frac{\partial l}{\partial s} = -\tau_s n + k_2 s, \quad \frac{\partial n}{\partial t} = -\tau_s n - k_1 l, \quad \frac{\partial s}{\partial t} = \tau_s s - k_1 l, \) (5.4)

σαγγείο \(k_1 \) και \(k_2 \) παρακάθετο συνολικά έργος. \(k_1^0, k_2^0 \) - αρμόδια συνολικά σημασίας. \(\tau_1, \tau_s \) - αρμόδια στις περιστάσεις της περιοχής \(1 \) και \(s \) συνολικά έργα.

(5.4) του πληροφορικολογικού έργου και του διαφόρου

\(k_i = b_\alpha l^\alpha l^\beta, \quad k_s = b_\alpha s^\alpha s^\beta, \quad \tau_s = -\tau_i = -b_\alpha l^\alpha s^\beta, \quad k_l = l^\lambda \left(\frac{ds}{dl} + \Gamma^\lambda_{\alpha\beta} s^\alpha s^\beta \right), \quad k_s = s^\lambda \left(\frac{dl}{dl} + \Gamma^\lambda_{\alpha\beta} l^\alpha l^\beta \right), \) (5.5)

σαγγείο

\(s^\alpha = \frac{dx^\alpha}{ds}, \quad l^\alpha = c^{\alpha\beta} s_\beta, \)

\(c^{\alpha\beta} \) - αρμόδια συνολικά σημασίας κατάστασης αρμόδια συνολικά σημαντική.

(5.5) του πληροφορικολογικού έργου και του διαφόρου

\(P^{(k)}_{(s)} = \Lambda \left(e^{(k)} \right)_j^j + 2M \frac{\partial U^{(k)}}{\partial l} \left(j^l \right) - 2M k_i U^{(n)} - 2M k^i U^{(s)} - 2M \frac{\partial \ln h^{(k)}}{\partial l} \left(U^{(s)} \right), \)

\(P^{(k)}_{(l)} = A \left(\frac{\partial U^{(k)}}{\partial l} \right) + (B - \Lambda) \frac{\partial U^{(k)}}{\partial s} \left(U^{(l)} \right) + 2M \tau_s \left(U^{(k)} \right) + A k_i U^{(k)} \left(U^{(l)} \right) -

\left(B - \Lambda \right) k^i U^{(k)} \left(U^{(l)} \right) - A \frac{\partial \ln h^{(k)}}{\partial l} \left(U^{(l)} \right) - \left(B - \Lambda \right) \frac{\partial \ln h^{(k)}}{\partial s} \left(U^{(l)} \right), \)

\(P^{(k)}_{(n)} = A \frac{\partial U^{(k)}}{\partial l} - A \tau_s U^{(k)} \left(U^{(s)} \right) + A k_i U^{(k)} \left(U^{(l)} \right) - A \frac{\partial \ln h^{(k)}}{\partial l} \left(U^{(s)} \right) - 1 \frac{1}{h} \left(B - \Lambda \right) \left(U^{(s)} \right), \)

σαγγείο \(U^{(k)}_{(1)}, U^{(k)}_{(s)}, U^{(k)}_{(n)} \) - \(\left(U^{(k)}, U^{(k)} \right) \) έργο και της περιοχής της περιοχής \(1, s \) και \(n \) συνολικά σημαντική.

\(U^{(k)}_{(l)} = U^\alpha l^\alpha, \quad U^{(k)}_{(s)} = U^\alpha s^\alpha, \quad U^{(k)}_{(n)} = U^3, \quad k = 0, 1, ..., N. \)
(5.1) და (5.2) დონეთა სასწავლების პროცესის განვითარება შედგება შემდეგ ზოგადი ტიპის ხვრელის გარე-გრძივი პროკეტირების მიერ გამოყენებით ანიმირებული უკვ. უერთებული უგანპირობები.

\[
\begin{align*}
\left(k, k, k, k, k, k, k, k \right) & \left(i, i, i, i, i, i, i, i \right) I \\
\left(k, k, k, k, k, k, k, k \right) & \left(i, i, i, i, i, i, i, i \right) II \\
\left(k, k, k, k, k, k, k, k \right) & \left(i, i, i, i, i, i, i, i \right) III \\
\left(k, k, k, k, k, k, k, k \right) & \left(i, i, i, i, i, i, i, i \right) IV \\
\left(k, k, k, k, k, k, k, k \right) & \left(i, i, i, i, i, i, i, i \right) V \\
\left(k, k, k, k, k, k, k, k \right) & \left(i, i, i, i, i, i, i, i \right) VI \\
\left(k, k, k, k, k, k, k, k \right) & \left(i, i, i, i, i, i, i, i \right) VII \\
\left(k, k, k, k, k, k, k, k \right) & \left(i, i, i, i, i, i, i, i \right) VIII \\
\end{align*}
\]

სადაც \(k = 0, 1, ..., N \).

(5.6) ბოლოსთუ გააჩნიათ თითი სხვადასხვა ჯილდოთად, შესაძლოა, ბოლოსთუ და გარუნთ
დონეთა პროცესი, ხოლო ტომებში ბრულ-შერთლივი ობიექტით.

(5.6) მონაცემთა სრულ გამოყოფა უკვ. გარე-გრძივი შესაფრთხობიანი სტრუქტურის ქიმიური თვალთან, რომლიც ლადირენზე გადასცემ - ხაჩქარები ადმინისტრირება ქიმიური თვალთან (\(\gamma_1 \cap \gamma_2 = \emptyset \), \(\gamma_1 \cup \gamma_2 = \gamma \))
და ზოგად ხაჩქარები გამოყოფილი ქიმიური თვალთან.

1. პროდინამიკი ქიქით ქმნილია. მაგალითად, \(f_j = \left(f_j^k, f_{j+1}^k \right)^T \) წარსული ხაჩქარები ქიმიური თვალთან.

მაქს წარამატებისათვის სასწავლები პროცესია მეტისუფლუ-
ღირს ობიექტით ყოფს: განსხვავებით \(\mathbf{B}(\mathbf{U}, \mathbf{v}) = \mathbf{L}(\mathbf{v}) \) \(\forall \mathbf{v} \in C^1(\omega) \cup C^0(\bar{\omega}) \),

სადაც \(\mathbf{B}(\mathbf{U}, \mathbf{v}) \) გამოყოფა ობიექტი ქიმიური თვალთან მაქს წარამატები.

(4.7) დონეთა პროცესი, ხოლო \(\mathbf{L}(\mathbf{v}) \)
(4.8) დონეთა პროცესი

\[
\mathbf{L}(\mathbf{v}) := \sum_{k=0}^{N} \left\{ \int_{\omega} \left(f_j^k \right)^T \mathbf{v}_{j+1}^k dx + \frac{1}{2k+1} \int_{\gamma} h \left(P_{\alpha j}^k \right)^T \mathbf{v}_{\alpha j}^k l_\alpha d\gamma \right\}.
\]

განსხვავებით ქიქით ქმნილი ხაჩქარები ქიმიური თვალთან.

მეტვალ, \(f_i^k = f_i^k = 0 \), \(k = 0, 1, ..., N \). თუ \(u_i^k \), \(\tilde{u}_i^k \) გამოყოფილია ქიმიური თვალთან და გამოთქვამლური სახელმწიფომ, მაქს მქონე ობიექტით

\[
\begin{align*}
\sum_{k=0}^{N} \frac{1}{2k+1} \int_{\gamma} h \left\{ \left(P_{il}^k \right)^T U_l^k + \left(P_{ls}^k \right)^T U_s^k + \left(P_{ln}^k \right)^T U_n^k \right\} d\gamma = \\
= \sum_{k=0}^{N} \frac{1}{2k+1} \int_{\omega} h \left\{ \left(A_{pp}^k \right)^T e_{pp}^k + 2 \left(M_{pp}^k \right)^T e_{pp}^k - 2\lambda_k h_{ij}^k e_{ij}^k \right\} dx.
\end{align*}
\]

49
(5.7) ფრაზით ქართული წარწერის როლი შეუწყობენ სიტყვები

\[\sum_{k=0}^{N} \frac{1}{2k+1} \int_{\gamma} \left(\mathbf{P}^{(k)} (l) \mathbf{u}' + \mathbf{P}^{(k)}'' (l) \mathbf{u}'' \right) d\gamma = \]

\[= \sum_{k=0}^{N} \frac{1}{2k+1} \int_{\omega} \left\{ (\Lambda e_{pp})^T e_{qq} + 2(M e_{ij})^T e_{ij} - 2\lambda_5 h_{ij} h_{ij} \right\} dx. \]

(5.8)

კონტრაქტი, \(k, k', k'', j = 0, 1, ..., N \) დაფუძნებული შავისხევი პრინციპი (5.6) ერთგაირდმოვნების საშუალო თანმომავლობაში დამოუკიდებლად, ხოლო გამოყენებული შექმნილი ერთგაირდმოვნების საშუალო პრინციპი

\[\mathbf{P}^{(k)} (l) \mathbf{u}' = 0, \mathbf{P}^{(k)}'' (l) \mathbf{u}'' = 0, k = 0, 1, ..., N. \]

(5.9)

სუეთში გამოყენებული (5.8) ტიპიდა შავისხევი მქონე უკული ტიპილო

\[\sum_{k=0}^{N} \frac{1}{2k+1} \int_{\omega} \left\{ (\Lambda e_{pp})^T e_{qq} + 2(M e_{ij})^T e_{ij} - 2\lambda_5 h_{ij} h_{ij} \right\} dx = 0. \]

(5.9)

როგორც ქართულად ნიშნებმა (4.20) პრინციპი, ხოლო (5.9) ტიპი ან მქოლებაში ტიპილო დაუმოწმებელი მიმოქროვებით ქულხისტოლური ტიპილო (მ.გ. §4., ოლ. 4).

\[e_{ij}' = 0, e_{ij}'' = 0, \frac{h}{h_{ij}} = 0, k = 0, 1, ..., N. \]

(5.10)

საიდაც (4.2) ტიპი შავისხევი ტანარმი დაგვიწერებთ

\[(e_{\text{ref}}')_{33} = \frac{2N - 1}{h} u_{\text{ref}}'_{3} = 0, (e_{\text{ref}}'')_{33} = \frac{2N - 1}{h} u_{\text{ref}}'_{3} = 0, N > 0, \]

სუეთში ქმ

\[u_{\text{ref}}'_{3} = u_{\text{ref}}'_{3} = 0. \]

(5.10)

ამით სიცოცრისადი ახდენს

\[u_{\text{ref}}'_{3} = u_{\text{ref}}'_{3} = 0 \] და ა.შ.

ხოლო ნორმალური მოქმედების სიცოცრისადი დაგვიწერებთ

\[(u_{\text{ref}}')_{3} = (u_{\text{ref}}')_{3} = ... = (u_{\text{ref}}')_{3} = (u_{\text{ref}}'')_{3} = (u_{\text{ref}}''')_{3} = ... = (u_{\text{ref}}''')_{3} = 0. \]

(5.11)

მიზანგამაგრები (4.2) ტიპი შავისხევი და (5.10), (5.11) ტიპი შავისხევი უკული ტიპილო

\[(u_{\text{ref}}')_{\alpha} = (u_{\text{ref}}')_{\alpha} = ... = (u_{\text{ref}}')_{\alpha} = (u_{\text{ref}}'')_{\alpha} = (u_{\text{ref}}''')_{\alpha} = ... = (u_{\text{ref}}''')_{\alpha} = 0. \]

(5.12)
(5.11) და (5.12)-ის მიხედვით წინამორბილი ოდე 1.2) განთავსებული ოპერატორი

\[
\begin{align*}
\partial_\alpha (u_\beta)' + \partial_\beta (u_\alpha)' - \partial_\beta \ln h (u_\alpha)' - \partial_\alpha \ln h (u_\beta)' = 0,
\end{align*}
\]

\[
\begin{align*}
\partial_\alpha (u_3)' + \frac{1}{h} (u_\alpha)' = 0,
\end{align*}
\]

\[
\begin{align*}
\partial_\alpha (u_3)'' + \frac{1}{h} (u_\alpha)'' = 0.
\end{align*}
\]

(5.13)

\[
\begin{align*}
\partial_\alpha (h^{-1} (u_\beta)') + \partial_\beta (h^{-1} (u_\alpha)') = 0,
\end{align*}
\]

\[
\begin{align*}
\partial_\alpha (h^{-1} (u_\beta)'') + \partial_\beta (h^{-1} (u_\alpha)'') = 0,
\end{align*}
\]

\[
\begin{align*}
\partial_\alpha (u_3)' + h^{-1} (u_\alpha)' = 0,
\end{align*}
\]

\[
\begin{align*}
\partial_\alpha (u_3)'' + h^{-1} (u_\alpha)'' = 0,
\end{align*}
\]

(5.14)

\[
\begin{align*}
\partial_\alpha (u_\beta)' + \partial_\beta (u_\alpha)' = 0,
\end{align*}
\]

\[
\begin{align*}
\partial_\alpha (u_3)' + \partial_\beta (u_\alpha)' = 0,
\end{align*}
\]

(5.12) განთავსებული ოპერატორი ჰომოგენური ფუნქციით

\[
\begin{align*}
(u_1)' = a_1' - b_3 x_2, \quad (u_2)' = a_2' + b_3 x_1, \quad (u_1)'' = a_1'' - b_3 x_2, \quad (u_2)'' = a_2'' + b_3 x_1.
\end{align*}
\]

(5.13) ჰომოგენურ ოპერატორი ჰომოგენური დერიაბილური

\[
\begin{align*}
\partial_\alpha (u_3)' - \partial_\alpha (u_3)'' - \frac{1}{h} (u_\alpha)' + \frac{1}{h} (u_\alpha)'' = 0,
\end{align*}
\]

(5.14) ჰომოგენურ ოპერატორი ჰომოგენური დერიაბილური

\[
\begin{align*}
b_1' = b_1'', \quad b_2' = b_2''.
\end{align*}
\]

\[
\begin{align*}
b_3' = b_3'', \quad b_3'' = b_3''.
\end{align*}
\]

\[
\begin{align*}
u' = \left(\frac{(u_3)'}{h} + \frac{x_3}{h} \right) e_j = a' + b' \times R,
\end{align*}
\]

\[
\begin{align*}
u'' = \left(\frac{(u_3)''}{h} + \frac{x_3}{h} \right) e_j = a'' + b'' \times R,
\end{align*}
\]

51
საგან უწყობს \(R(x_1, x_2, x_3) \) დარსული ფუნქციით არასაჭირო - გამოწვევა.

\(a' = (a'_1, a'_2, a'_3), \ b' = (b'_1, b'_2, b'_3) \)
\(a'' = (a''_1, a''_2, a''_3), \ b'' = (b''_1, b''_2, b''_3) \) -ხარჯანივთა ფუნქციები.

ამოცანა მოიცავს, რომ

\[b' = b''. \]

თუ გამოქვათ \(N = 0 \) მათემატიკურა, მაშინ \(b'_1 = b'_2 = b'_3 = b''_1 = b''_2 = 0. \)

(5.14) წყალურია გამო გამოწვევა.

ანალოგა სისტემრივი მებრძოლ.

თუ მოითხოვთ 1. (5.6) ყუთი სიმბოლომმა სიმძლავრი, როგორ დარგავინ სიმძლავრის გამო- რეგულირებით (4.20) გამოკვეთი, ბრძოლა სიმძლავრის ხელმძღვანელთა მორჩელი გამოკვეთაში შეს გამოყოფილი კონ მორჩელმა, რომ გამოყოფილმა სიმძლავრის გამომრჩელი სამოძრავი გამოწვევი.

თუ სისტემა რითაც წყალური სიმძლავრით ხელმძღვანელ გამოწვევა გამოწვევა, მაშინ (5.14) საზოგადო გამომყოფი დარგავით სიმძლავრი. \(a', a'', b' \) მოძრარები მარჯვენა დედათახარისხი (ყუთი ოჯ ბ' კოდიგალობით) სხვაობით მოძრავი ძირძი გამოწვევა შეიძლება.

2. სიმძიმითი გამოწვევა. გამომძიმეთ პერიოდი სიმძიმითი განი, რომლის ში ჯგუფით სიმძიმითი განი, რომლის ში ჯგუფით სიმძიმით გამოწვევი გამოწვევი.

\[a_{\alpha \beta} = - R_{\alpha \beta}, \quad a_{\alpha}^2 \equiv \delta_{\beta} = - R_{\beta}^2. \]

(2.28) - დარს გამოწვევი შესაბამიდველი გამოწვევი სიმძიმითი არსებითი გამოწვევა.

\[
- \frac{1}{2k+1} \left\{ \nabla_\alpha \left(P \frac{(k)}{\beta} \alpha \beta \right) + \frac{1}{R} \frac{(k)}{R} \beta \beta - \frac{1}{h} \frac{(k)}{h} \beta \beta \right\} = \frac{(k)}{F} \beta, \\
- \frac{1}{2k+1} \left\{ \nabla_\alpha \left(P \frac{(k)}{\alpha} \alpha \beta \right) + \frac{1}{R} \frac{(k)}{R} \alpha \beta - \frac{1}{h} \frac{(k)}{h} \alpha \beta \right\} = \frac{(k)}{F} \beta, \quad k = 0, 1, \ldots, N.
\]

სიმძიმითი მორჩელი თავიდან სიმძიმითი გამოწვევი შეიძლება ვარდოთ \(N \) ჯგუფით არსებითი მორჩელება, როდესაც მოძრაული სიმძიმით გამოწვევა შეიძლება ვარდოთ უნიმერჯობა ჯგუფით არსებითი მორჩელება.

\[
\sum_{k=0}^{N} \frac{1}{2k+1} \int_{\gamma} \left\{ (F(k))^{i} \right\}_U \cdot i_{\alpha} d\gamma + \int_{\omega} (F(k))^{i} \cdot \omega d\omega \right\} = \\
= \sum_{k=0}^{N} \frac{1}{2k+1} \int_{\omega} \{ (\Lambda(k))_j^{i} \} U^{(k)}_j \cdot (\omega(v) + 2(M(k))^{i} \cdot \omega(v)) - \\
- 2\lambda_5 \cdot h^{i} N^{(k)} h^{j}(U) \cdot i_{\alpha} d\omega \quad \omega \text{-თქვენი,} \quad \omega \text{თქვენი}
\]

(5.15)
საქმიანობა, $u^{(k)}, u_{i}^{(k)}, u_{i}^{(k)''}, k = 0, 1, \ldots, N$ და მათი სიძვირე ჭის ანთროპომირებული (5.15) სიძვირეული ანთროპომირებული ჭის ანთროპომირებული თეორემის სიმრავლი, რათა გამორჩეული ანთროპომირებული ჭის ანთროპომირებული თეორემის ჰომოგერია.

$$(k), \quad (k), \quad \mathbf{P}(i) = (k)'' \mathbf{P}(i) = 0, \quad k = 0, 1, \ldots, N.$$ (5.16)

ω მქონეპარტიული გამოთვლით მიუმუშაობით სახელმწიფო სიძვირები, რომლებს შემდგომად გამორჩეული ანთროპომირებული ჭის ანთროპომირებები დინამიკის წყლის ტაობა

$$ds^2 = \Lambda(dx^2 + dy^2), \quad \Lambda > 0, \quad \nabla^\alpha = \frac{1}{\Lambda} \nabla_\alpha.$$ (4.20)

თუ სამონოთვლით (4.20) პორტროქიონი, მაშინ ჭონ ქვეპარტიული ქვამართული სიძვირე სიძვირეულთან ერთად.

$$(\Lambda (e^{(k)}_{i j})^T e^{(k)}_{i} e^{(k)}_{j} + 2(M e^{(k)}_{i})^T e^{(k)}_{i} - 2\lambda_5 (h^{(k)}_{i j} h^{(k)}_{i j} \geq 2 \sum_{\alpha, \beta = 1}^{2} \left\{ (e^{(k)}_{\beta})^2 + (e^{(k)''}_{\beta})^2 + \left(\frac{2}{\Lambda} e^{(k)}_{\beta a 3}\right) + \left(\frac{2}{\Lambda} e^{(k)''}_{\alpha 3}\right) + (e^{(k)}_{33})^2 + (e^{(k)}_{33})^2 + (h^{(k)}_{3})^2 + \left(\frac{2}{\Lambda} h^{(k)}_{33}\right)\right\}, \quad k = 0, 1, \ldots, N.$$ (5.17)

$$e_{\beta}^2 e_{\beta} = \sum (e_{\beta})^2, \quad e_{3}^2 e_{3} = \sum \frac{1}{\Lambda} e_{3},$$

$$h_{\beta} h_{\beta} = \sum (h_{\beta})^2, \quad h_{3} h_{3} = \sum \frac{1}{\Lambda} h_{3}.$$ (5.17)-სა და (5.16)-ს გათავისუფლებით გამოთვლით

$$(k), \quad (k)'' = h_{i j} = h_{i j} = 0, \quad k = 0, 1, \ldots, N,$$

საბოლოო ჭონ ქვეპარტიული ანთროპომირების მიხედვით (5.15) დინამიკური თანახლობის ობიექტი მდგომარე

$$U_{j} = U_{j} = \ldots = U_{j} = 0.$$ (5.18)

(5.18)-ს გათავისუფლებით (5.15) დინამიკური თანახლობის მიხედვით (5.15) დინამიკური თანახლობის სიძვირე

$$\frac{1}{2} (\nabla^0_\alpha U^0_{\beta} + \nabla^0_{\beta} U^0_{\alpha}) + \frac{1}{\Lambda} \alpha_\beta U^0_{3} = 0,$$

$$\nabla^0_{\alpha} U^0_{3} = \frac{1}{\Lambda} U^0_{\alpha} = 0.$$ (5.18)

აქ თავისუფალი დამოკიდებულების (10), როგორც

$$U = (U^0, U^0'')^T = U^0 a^0 + U^0 n = const.$$ 53
\(h_{\alpha \beta} = h_{\alpha 3} = 0 \) მიხედვით (5.15)-ის სიურთით თუმცა ფუნქციული სხვადასხვა ჯგუფთან არაგემორობთ.

ოთხის ტიპები

(5.6) I და III – VIII კლასებით აქვთ სხვა თვე-თანამშრომალი

(4.20) პრობლემები, აქ არ არის ურბანული ჯგუფ აქტიური ნაწილებში I კლასის უნივერსული ჯგუფი, თუმცა აქტიური ნაწილებში, ჯგუფ პარაგრაფებს შერქვათ სქემები.
გლდება

\[N = 0 \text{ და } N = 1 \text{ მოსამართლები.} \] ჩვენი არსებულში საქორწელო გამოჩენილი და გრადიუნტიალი ფუნქციიდან წარმოდგენილი ობიექტი.

ა თეორიი გამოყენებით ჩვენია გამოჩენილი სისტემით ნაწარმი და ჩვენი გრადიუნტიალი ფუნქციიდან წარმოდგენილი ობიექტი.

1. ძირითადა გამოჩენილით სისტემა \(N = 0 \) მოსამართლებით

როდესაც \(N = 0 \), ჰოლოგრაფიული თავი (2.26) სისტემა გამოყენებით ხდება (ქმედის მოხსენებით ფიზიკის ბიუჯეტი თეორიაში, სადაც გამოყენებით გრადიუნტიალი ბოლოვის დერიული ფუნქციით თეორიათ ჰოლოგრაფია [8], [5])

\[\frac{1}{\sqrt{a}} \partial_{\alpha} (\sqrt{a} \tau^0) + \partial_{\alpha} \ln h (\pi) \tau + \Phi = 0, \] \hspace{1cm} (11)

სადაც ისევ თავი (2.27) დერიული თეორიაში

\[\Phi = \frac{1}{2h} \int_{-h}^{h} \Phi dx^3 + \frac{1}{2h} (\tau(n^+) + \tau(n^-)). \] \hspace{1cm} (11)

(11) სისტემის კომპლექსური ქვემო სახით

\[\nabla_{\alpha} \tau^0 \beta - b_{\alpha} \tau^0 \beta + \partial_{\alpha} \ln h (\pi) \tau^0 \beta + \Phi = 0, \] \hspace{1cm} (12)

\[\nabla_{\alpha} \tau^0 \alpha^3 + b_{\beta} \tau^0 \beta + \partial_{\alpha} \ln h (\pi) \tau^0 \alpha^3 + \Phi = 0, \]

სადაც ჰოლოგრაფიული თავი (2.44) გრადიუნტიალი თეორიაში \(\pi \) თავი ჰოლოგრაფიული სისტემა გამოსახული გამოყენებით

\[\tau^0 \beta = \Lambda \theta^0 \alpha^0 + 2M \epsilon^0 \alpha^0 - 2\lambda_5 \hbar^0 \alpha^0 + N^0 \alpha^0, \] \hspace{1cm} (13)

\[\tau^0 \alpha^3 = 2M \epsilon^0 \alpha^3 - 2\lambda_5 \hbar^0 \alpha^3 + N^0 \alpha^3, \]

\[\tau^0 \alpha^3 = 2M \epsilon^0 \alpha^3 + 2\lambda_5 \hbar^0 \alpha^3 + N^0 \alpha^3, \]

\[\tau^0 \alpha^3 = \Lambda \theta^0 + N^0 \alpha^3. \]
\(\mathbf{U} = 0\), რაც და მონტე (14) დოქმაგლონ (2.47) ფიქრობინების ხორცა იყოლია.

\[
{^{(1)}} e_0^a = \frac{1}{2} (\nabla_0^a \mathbf{U}^\beta + \nabla_0^a \mathbf{U}^\alpha - 2b_0^a \mathbf{U}_3),
\]

\[
{^{(1)}} a_0^3 = \frac{1}{2} (\nabla_0^a \mathbf{U}_3 + b_0^a \mathbf{U}^\beta),
\]

\[
{^{(1)}} b_0^a = \frac{1}{2} S(\nabla_0^a \mathbf{U}_3 - \nabla_0^a \mathbf{U}^\alpha),
\]

\[
{^{(1)}} c_0^3 = \frac{1}{2} S(\nabla_0^a \mathbf{U}_3 + b_0^a \mathbf{U}^\beta),
\]

\[\mathbf{U} = 0\).

ფროგბღა თაშლი (2.57) ფიქრობინების ხორცა იყოლია.

\[

\nabla_0 (u_0^a)^\beta = \nabla_0 u_0^a - b_0^a u_0^3, \quad \nabla_0 (u_0^3)^a = \partial_0 u_0^3 + b_0^a u_0^\beta,
\]

\[
\nabla_0 (u_0^3)^a = b_0^a u_0^\beta, \quad \nabla_0 (u_0^3)^a = 0.
\]

\[N^{ij}\] სითხეში გახდება მონტე (2.52)-(2.55) ფიქრობინები, რომლებიც გმოთ ლომინალური გარანტიაში ლინიური დოქმაგლონ თორჯომის თხოვებით.

თუ (14) დოქმაგლონ მდგომად (13)-ში, ხოლო შეხვდება გმოთ ლომინალური თავებით (12) ტრამზირიგების ანკირათობაში, მდგომად

\[
A \nabla_0 (u_0^a)^\beta + B \nabla_0 (u_0^a)^\alpha + [(B - \Lambda) \mathbf{K}_a^\gamma - \mathbf{A} b_0^a] u_0^\gamma =
\]

\[
- [2\Lambda H a_0^a + (2M + A) b_0^a] \nabla_0 (u_0^3)^a - 2\partial_0 (\Lambda H a_0^a + M b_0^a) (u_0^3)^a +
\]

\[
+ \partial_0 \ln h(\Lambda \nabla_0 (u_0^3)^a - 2\Lambda H \nabla_0 (u_0^3)^a) + A \nabla_0 (u_0^a)^\beta + (B - \Lambda) \nabla_0 (u_0^a)^\alpha - 2M b_0^a (u_0^3)^a +
\]

\[
+ \nabla_0 (u_0^3)^a \Lambda a_0^a + b_0^a \nabla_0 (u_0^3)^a + \partial_0 \ln h(\nabla_0 (u_0^3)^a) + F_0^\beta = 0,
\]

\[
A \nabla_0 (u_0^3)^a + A \nabla_0 (a_0^a)^\gamma - 2(2\Lambda H^2 + M b_0^a) (u_0^3)^a +
\]

\[
+ 2\Lambda H \nabla_0 (u_0^a)^\alpha + 2M b_0^a \nabla_0 (u_0^a)^\gamma + \partial_0 \ln h(\nabla_0 (u_0^3)^a + A b_0^a (u_0^3)^a) +
\]

\[
+ \nabla_0 (u_0^3)^a + b_0^a \nabla_0 (u_0^3)^a + \partial_0 \ln h(\nabla_0 (u_0^3)^a) + F_0^\beta = 0.
\]

\[\text{გემ სუ თარგმნილები შეფასებით ფროგბღა}

\[
\nabla_0 \nabla_0 (u_0^a)^\beta = \nabla_0 \nabla_0 (u_0^a) + R_{\gamma_0}(u_0^a)^\gamma = \nabla_0 \nabla_0 (u_0^a) + K_0 u_0^\gamma,
\]

სადაც \(R_{\gamma_0}(u_0^a)^\gamma\) - თხოვნებმა მონტე შეფასებით.

(16) ფროგბღა თაშლით გამოთხოვებელ თხოვნებამ უმთავრესი ნაბკიდის მიმოქრობა რეანცირების მაგალით გადახრებით ანილების თხოვნებით.

\[\text{თხოვნებმა შეფასებით გამოთვლილი შედეგები}

\[
(0)_{ij} = (-B_0 T + \Lambda (0) \gamma_0) a_{ij} + 2M (0)_{ij} - 2\Lambda s (0)_{ij} + N (0)_{ij} - N (0)_{ij},
\]

56
\[N^{(0)}_{ij} = B^t T^{(0)} \circ \nabla_i U^j \]

и (16) градиентов скалярных полей, значений

\[A \nabla \alpha \nabla^\alpha U^{(0)} - B \nabla \beta \nabla \alpha U^{(0)} + [(B - \Lambda) K \alpha^2_a - Ab_a^b b^{(0)}_a U^{(0)} - 2H^2 \Lambda a^{ab} + M b^{ab} U^{(0)} + 2H B^t T + \nabla \alpha N^{(0)} - b^{(0)}_a N^{(0)} - \partial_\alpha \ln h N^{(0)} - \Lambda b^{(0)}_a + F^\beta = 0, \]

\[A \nabla \alpha \nabla \alpha U^{(0)} + A \nabla \alpha (b^{(0)}_a U^{(0)} - 2H^2 + M b^{ab} U^{(0)} + 2H B^t T + \nabla \alpha N^{(0)} - b^{(0)}_a N^{(0)} - \partial_\alpha \ln h N^{(0)} - \Lambda b^{(0)}_a + F^\beta = 0, \]

(18)

от типа полигонов в динамике полей величин \(k^2, k2_m \) и \(\partial_\beta k_\alpha \) для гравитации. Эта зависимость определяется квантовыми гравитациями. Основные конструкции векторных полей скалярных полей производных значений (12) скалярных неразрывностей нельзя рассматривать как по эквивалентно

\[\nabla_x (\tau^{11} - \tau^{22} + i(\tau^{12} + \tau^{21})) \quad \nabla_y (\tau^{11} + \tau^{22} + i(\tau^{12} - \tau^{21})) + H \tau^{1} - Q \tau^{1} + X^+ = 0, \quad \nabla_x \tau^{1} + \nabla_y \tau^{1} + H(\tau^{1} + \tau^{2}) + Re[Q(\tau^{1} - \tau^{2} + i(\tau^{1} + \tau^{2})))] + X^{(0)} = 0, \]

(19)

от

\[\nabla_x = \frac{1}{2}(\nabla_x + i \nabla_y), \quad \nabla_x = \frac{1}{2}(\nabla_x - i \nabla_y), \]

\[\tau^{1} = \tau^{13} + i \tau^{23}, \quad X^{+} = X^{1} + i X^{2}, \quad H = -\frac{2}{\Lambda} \partial_x n \partial_x r = \frac{2}{\Lambda} n \partial_x^2 r, \]

\[Q = \frac{1}{2}(b^1 - b^2_2 + 2ib^1_2) = \frac{-2}{\Lambda} \partial_x n \partial_x r, \quad ds^2 = \Lambda(dx^2 + dy^2), \quad \Lambda > 0. \]
\[\omega^+ = u_1 + iu_2 \text{ and } \omega^+ = \frac{1}{2} \omega^+ = u^1 + iu^2 \text{ satisfy the \(\omega^+ \text{ and } \omega^+ \) conditions, which lead to the \(\omega^+ \text{ and } \omega^+ \) conditions in equation (10).} \]

\[\nabla_z \omega^+ = \partial_z \omega^+, \quad \nabla_x \omega^+ = \hat{\Lambda} \partial_x \omega^+, \quad \nabla_z \omega^+ = \partial_z \omega^+, \quad \partial_z \omega^+ = \frac{1}{\hat{\Lambda}} \partial_z \omega^+, \quad (11.10) \]

\[\nabla_x u_\beta = \partial_x u_\beta - \Gamma_\gamma^{\alpha \beta} u_\gamma, \quad \nabla_x u_\beta = \partial_x u_\beta + \Gamma_\alpha^{\beta \gamma} u_\gamma. \]

\[\Gamma_\alpha^{\beta \gamma} \text{ - Christoffel symbols satisfy the condition that the Christoffel symbols satisfy the condition for \(\omega^+ \text{ and } \omega^+ \) conditions.} \]

\[\Gamma_1^{11} = \Gamma_1^{12} = \Gamma_2^{11} = -\Gamma_2^{12} = \frac{1}{2} \frac{\partial \ln \hat{\Lambda}}{\partial x}, \quad \Gamma_2^{22} = \Gamma_2^{21} = \Gamma_1^{12} = -\Gamma_1^{21} = \frac{1}{2} \frac{\partial \ln \hat{\Lambda}}{\partial y}. \quad (11.11) \]

\[f_\alpha^{\beta} \text{ and } f_{\alpha \beta} = \omega \text{ satisfy the condition that the Christoffel symbols satisfy the condition for \(\omega^+ \text{ and } \omega^+ \) conditions.} \]

\[\nabla_z (f_1^{11} + f_2^{22}) = \hat{\Lambda}^{-1} \partial_z f_\alpha^{\beta}, \quad \nabla_x (f_1^{11} - f_2^{22} + 2i f_2^{12}) = \partial_x (f_1^{11} - f_2^{22} + 2i f_2^{12}). \quad (12.12) \]

\[\nabla_x h_\beta^{1 \beta} = \partial_x h_\beta^{1 \beta}, \quad \nabla_x h_\beta^{2 \beta} = \partial_x h_\beta^{2 \beta}, \quad (11.12) \]

\[\nabla_z h_\beta^{1 \beta} = \partial_z h_\beta^{1 \beta}, \quad \nabla_z h_\beta^{2 \beta} = \partial_z h_\beta^{2 \beta}, \quad (10.10) \]

\[\nabla_z h_\beta^{12} = \nabla_x (\hat{\Lambda}^{-1} h_\beta^{1 \beta}) = \hat{\Lambda}^{-1} \nabla_x h_\beta^{1 \beta} = \hat{\Lambda}^{-1} \partial_x h_\beta^{1 \beta}. \quad (13.13) \]

\[\tau_+ = \tau_{13} + i \tau_{23}, \quad X_+ = X_1 + i X_2. \quad (13.14) \]

\[\tau_1^{1} + \tau_2^{2} + i(\tau_1^{1} - \tau_2^{2}) = 2B_\theta - 4(\lambda_\beta S) H U_3 - 4\lambda_\beta S \hat{\Lambda}^{-1} \partial_x U_+ + N_1^{\frac{1}{2}} N_2^{\frac{1}{2}} + i(N_{12}^{\frac{1}{2}} - N_{21}^{\frac{1}{2}}), \]

\[\tau_+ = 2(M - \lambda_\beta S)(\partial_x U_3 + \frac{1}{2} H U_+ + \frac{1}{2} QU_+) + N_+, \]

\[+ \tau = 2(M + \lambda_\beta S)(\partial_x U_3 + \frac{1}{2} H U_+ + \frac{1}{2} QU_+) + N, \quad (15.15) \]
$U^+ = \Lambda^{-1} U_+ = U^1 + iU^2$, $\theta = \nabla \omega U^\alpha = \Lambda^{-1}(\partial_z U_+ + \partial_{\bar{z}} \overline{U}_+), \quad +\tau = \tau_{31} + i\tau_{32},$ $N_+ = N_{13} + iN_{23}, \quad +N = N_{31} + iN_{32}.$

(1.14) სპექტრული სტრუქტურით მყურუოვან ფუნქცია სიქმი (I, j : = \tau_{ij} + 2\lambda S h_{ij})

$\Lambda^{-1}\partial_z(\tau_{11} - \tau_{22} + 2i \tau_{12}) + \partial_{\bar{z}}(\tau_{11}^2 + \tau_{22}^2) - 4i\lambda S \partial_{\bar{z}} h_{12}^2 - H\tau_+ + Q\overline{\tau}_+ + X_+ = 0,$

$\Lambda^{-1}(\partial_z \tau_+ + \partial_{\bar{z}} \overline{\tau}_+) + H(\tau_1^2 + \tau_2^2) + Re[Q(\tau_1^2 + \tau_2^2 + 2i \tau_{12})] + X_3 = 0.$

(1.4)-ის შესადგ. დერიულის ოპერატორი გვხვდება

$k_{12} = \frac{1}{2} S(\nabla_z U_2 - \nabla_y U_1).$

თუ გავოგოგოამონიჭებით, რომ

$\nabla_z \omega_+ = \frac{1}{2}(\nabla_z \omega_1 + \nabla_y \omega_2 + i(\nabla_z \omega_2 - \nabla_y \omega_1)),$

ამით გვხვდება

$h_{12} = -\frac{i}{2} S(\nabla_z U_2 - \nabla_y U_1),$

ანუ (1.10)-ის შესადგ. რეგისტრაციის გათავისუფლებით მორთვა

$h_{12} = \frac{1}{2} \Lambda h_{12} = -\frac{1}{2\Lambda} S(\partial_z U_+ - \partial_{\bar{z}} \overline{U}_+),$

ასეთი დერიული დანამუშავებიში დერიულთა და theta სიქმით მორთვა

$h_{12} = \frac{i}{2} S \left(\theta - \frac{2}{\Lambda} \partial_z U_+\right).$

(1.15) ფუნქციად ჩატარდებია N_{ij} სიქმეები შექმნის N_{-ij} სიქმეებად (I, j). ამით გვხვდება თარიღური დანამუშავების ნაგებობი

$\tau_1^2 + \tau_2^2 + i(\tau_{12}^2 - \tau_{11}^2) = 2B\theta - 4(B - \lambda S)H U_3 - 4\lambda S \Lambda^{-1} \partial_z U_+ - 2B^2 T + N_{11}^2 + N_{22}^2 + i(N_{12}^2 - N_{21}^2).$

$\tau_{33} = \Lambda \theta - 2HU_3 - B^2 T + N_{33}.$

5) პრობლემა შესახებ მოლანჯილი პრობლემა თარიღის სიქმეებით შექმნის გარკვეული თარიღით (3.24) ფუნქციის არკრეალი

$A^i \nabla^2 (\frac{3}{k^2} A^i + \alpha S)\bigg|_T = -W + A^i \left(-\frac{3}{2k^2}(T^+ + T^-) + \frac{H}{k} (T^+ - T^-)\right).$ (1.16)
თუ $T^+ = T^- = T_0$, შემდგომ

$$A^t \nabla^2 y (0) T - \left(\frac{3}{h^2} A^t + \alpha S \right) (0) T = -W - \frac{3}{h^2} T_0.$$

$$(0)$$

T-ის შემსრულებით სამოდიფერენციალი მომენტი შემდგომ პივნის შექმნა (1) და (2)-ს გამო-

gარემოში შესაძლებელი ლინეარური

$$T = \frac{1}{2} (T^+ + T^-) - (0), \quad T = \frac{1}{2} (T^+ - T^-)$$

და T-ის ალგებრული შემდგომნაცემ

$$T = \sum_{k=0}^{2} T^k P_k \left(\frac{x}{h} \right).$$

(1.17)

პირველი გარეს პორტტენციებთან დამატებულია.

3) პორტტენციებზე მოაქვთ მოცულობა გარეს პირველი გარეს პირობების შემთხვევაში პორტტუ-

tაგი (3.22) ფორმულირდება შეფარვით

$$A^t \nabla^2 y (0) T - \alpha S (0) T = -W + A^t \left(\frac{1}{2h} (Q^+ + Q^-) - H (Q^+ - Q^-) \right),$$

როცა $Q^+ = Q^- = Q_0$, შემდეგ შეფარვით

$$A^t \nabla^2 y (0) T - \alpha S (0) T = \frac{1}{h} A^t Q_0 - W.$$

თუ (1) და (2)-ს განთავსებული აქტიური შემდგომ გარემოში

$$T = \frac{-h}{2} (Q^+ - Q^-), \quad T = \frac{-h}{2} (Q^+ + Q^-)$$

და T-ის ფორმულირება შეფარვით (1.17) ფორმულირდება, შემდეგ სამოდიფერენციალი გარეს პორტტენციებმა

gარემოში შექმნილია.

3) პორტტუ-გარე შეფარვით გარეს პირველი გარეეფექტის შემთხვევაში შემდგომ შეფარვით (ას. პორტტუ-

tაგი (3.27),(3.36))

$$A^t_0 \nabla^2 y (0) T - (\varepsilon + \alpha^t S) (0) T = -(\varepsilon T_e + \varepsilon^t T_e^*) - W^*.$$

(1.19)

მთელი გარემოში ას შეფარწყალობის შესაძლებლობია: პორტტუ-

tაგი (3.16) ფორმუ-

tაგი (3.25) სამოდიფერენციალი გარეშე შეფარწყალობის შემთხვევაში, როცა გარეს სამოდიფერენციალ გარეშე

gარემოში შექმნილია შეთავაზება, შეფარვით

$$\frac{1}{h} (T^{(1)} + 3 T^{(2)}) + k (T^{(0)} + T^{(1)} + T^{(2)}) = k T_e,$$

60
\[
\frac{1}{\hbar}(-T^{(1)} + 3T^{(2)}) + k(T^{(0)} - T^{(1)} + T^{(2)}) = kT_e,
\]
ა აღნიშნული თვითმყოფი ქვერივათობის ქცევამდე და გამჭვირვალობის შევალავის ტენსორით

\[
T^{(1)} = 0, \quad T^{(2)} = \hbar(3I + \hbar k)^{-1}k(T_e - T^{(0)}).
\] (120)

პირველი თანამედროვე აღსანიშნავი ართკითხვა (3.8) სისტემაში ქვემოხარჯებით ქვის ქვრიგ იქნებოდა ქვრიგი სისტემა (2) ნაწილთან

\[
A^{(0)}(\nabla^{2}T^{(0)} + \frac{3}{\hbar^{2}}T^{(2)} - \frac{2H^{(1)}}{\hbar}T^{(1)}) - \alpha S^{(0)}T^{(0)} = -W^{(0)}.
\]

თუ ამ აღნიშნულ განმარდებზე ხდებოდა (120) სისტემა, ბირთვით გამჭვირვალობის სისტემა (0) ქართულად

\[
A^{(0)}\nabla^{2}T^{(0)} - \frac{1}{\hbar}(3(3I + \hbar k)^{-1}kA^{(0)} + \alpha S^{(0)})T^{(0)} = -W^{(0)} - \frac{3}{\hbar}A^{(0)}(3I + \hbar k)^{-1}kA^{(0)}T_e.
\] (121)

ერთგვარი თანამედროვე შესაძლებლობა მაქვს რომ ჰიდროლოგიური თუმცა ნორმალური გამჭვირვალობის უფრო ტოლდამ ქართულ-ქართულად, რათა ქვრიგ და ჰარი, ამიტომ ჰიდროლოგიური სისტემა და \(\alpha = 0\).

§2. \(N = 0\) შემთხვევა. ჰიდროლოგიური გამჭვირვალობა

ჰიდროლოგიური გამჭვირვალობა ზოგ შემთხვევაში ფუნქციად ჰომოგენურ სისტემა. ოქროვით ჰიდროლოგია მაზარი 0 და (12) სისტემა დეტალურ მოთხოვნა განვიხილავთ სისტემა (0) სისტემა ლენჰშინი შედის

\[
\frac{1}{\hbar} \partial_{\alpha}(\hbar T^{(0)}_{\alpha \beta}) + F^{(0)}_{\beta} = 0,
\]

\[
\frac{1}{\hbar} \partial_{\alpha}(\hbar T^{(0)}_{\alpha 3}) + F^{(0)}_{3} = 0 \quad \omega - \omega^.,
\] (2.1)

(13) თანამედროვე ამ შემთხვევაში შედის შიდა

\[
T^{(0)}_{\alpha \beta} = \Lambda \partial_{\gamma} U^{(0)}_{\gamma \delta \alpha \beta} + A \partial_{\alpha} U^{(0)}_{\beta} + (B - \Lambda) \partial_{\beta} U^{(0)}_{\alpha} + N^{(0)}_{\alpha \beta},
\]

\[
T^{(0)}_{\alpha 3} = A \partial_{\alpha} U^{(0)}_{3} + N^{(0)}_{\alpha 3},
\]

\[
T^{(0)}_{3 \alpha} = (B - \Lambda) \partial_{\alpha} U^{(0)}_{3} + N^{(0)}_{3 \alpha},
\]

\[
T^{(0)}_{33} = \Lambda \partial_{\gamma} U^{(0)}_{\gamma} + N^{(0)}_{33},
\] (2.2)
ნაყავა არაჭრილობა შეიძლება გამოვიყენოთ შემდეგ ფორმულები:

\[
N^\alpha_\beta = \frac{1}{2} A^\alpha_\beta g^{\lambda\mu} g^\lambda_{\beta\bar{\lambda}} g^\mu_{\alpha\bar{\lambda}} + \frac{1}{2} (\dddot{A}^\alpha_\beta g^{\lambda\mu} g^\lambda_{\beta\bar{\lambda}} g^\mu_{\alpha\bar{\lambda}} + \dddot{A}^\alpha_\beta g^{\lambda\mu} g^\lambda_{\beta\bar{\lambda}} g^\mu_{\alpha\bar{\lambda}})
\]

\[
N^\alpha_3 = (A^\alpha_\beta g^{\lambda\mu} g^\lambda_{\beta\bar{\lambda}} g^\mu_{\alpha\bar{\lambda}}) + \partial^\alpha_{\beta} U^3_3 + \frac{1}{2} (A^\alpha_\beta g^{\lambda\mu} g^\lambda_{\beta\bar{\lambda}} g^\mu_{\alpha\bar{\lambda}}) + \partial^\alpha_{\beta} U^3_3,
\]

\[
N^\alpha_3 = [(B - \Lambda)\partial^\alpha_{\beta} U^3_3] + \partial^\alpha_{\beta} U^3_3,
\]

\[
N^\alpha_3 = \frac{1}{2} \partial^\alpha_{\beta} U^3_3 + [(B - \Lambda)\partial^\alpha_{\beta} U^3_3] + \partial^\alpha_{\beta} U^3_3.
\]

თუ ხასიათი (2.2) გამოიყენებისთვის (2.1) სისტემა, მოთხრობი მდგომ განსხვავებით შედგენილ სისტემაში, მიღებით შემდეგ ფორმულები

\[
A\Delta U^\alpha_\beta + B\partial^\beta_\alpha (\partial^\alpha U^\alpha) + \partial^\alpha ln h [A\partial^\alpha U^\alpha (B - \Lambda)\partial^\beta U^\alpha] + \Lambda(\partial^\beta ln h)\partial^\alpha U^\alpha + \partial^\alpha N^\alpha_\beta + \partial^\alpha ln h N^\alpha_\beta + F^\beta = 0,
\]

\[
A\Delta U^3_3 + A(\partial^\alpha ln h)\partial^\alpha U^3_3 + \partial^\alpha N^\alpha_3 + \partial^\alpha ln h N^\alpha_3 + F^3_3 = 0.
\]

ფორმულები (2.2) და (2.3) ხასიათი შედგება

\[
\tau^\alpha_\beta = (-B^T + \Lambda\partial^\gamma U^\gamma)\partial^\beta \partial^\alpha U^\alpha (B - \Lambda)\partial^\beta U^\alpha + \partial^\alpha (B^T) \partial^\beta U^\beta,
\]

\[
\tau^\alpha_3 = A\partial^\alpha U^3_3 + N^\alpha_3 - (B^T) \partial^\alpha U^3_3,
\]

\[
\tau^\alpha_3 = (-B^T + \Lambda\partial^\gamma U^\gamma) + N^\alpha_3;
\]

(2.3) სისტემა ხასიათი იყო

\[
A\Delta U^\alpha_\beta + B\partial^\beta_\alpha (\partial^\alpha U^\alpha) + \partial^\alpha ln h [A\partial^\alpha U^\alpha (B - \Lambda)\partial^\beta U^\alpha] + \Lambda(\partial^\beta ln h)\partial^\alpha U^\alpha - B^T(\partial^\alpha ln h T + \partial^\beta T) + \partial^\alpha N^\alpha_\beta - \partial^\alpha ln h N^\alpha_\beta + F^\beta = 0,
\]

\[
A\Delta U^3_3 + A(\partial^\alpha ln h)\partial^\alpha U^3_3 + \partial^\alpha N^\alpha_3 + \partial^\alpha ln h N^\alpha_3 + F^3_3 = 0.
\]

(2.3) და (2.4) გამოიყენება სისტემაში შემდეგ შედგებითი ზოგადი თავისუფლები შეტანილი სისტემაში, რომლისთვისც პარამეტრები თვით განვითარებენ შედგენილი სისტემიდან, შერეული ზოგადი თავისუფლები შეტანილი სისტემიდან შეტანილი ზოგადი თავისუფლები შეტანილი სისტემაში. ჰარამი გამოიყენება შემდეგ შედგება, რომ გამოიყენება რისხილი ზოგადი თავისუფლები

\[
A\Delta U^\alpha_\beta + B\partial^\beta_\alpha (\partial^\alpha U^\alpha) + \partial^\alpha N^\alpha_\beta + F^\beta = 0,
\]

\[
A\Delta U^3_3 + \partial^\alpha N^\alpha_3 + F^3_3 = 0.
\]

62
(2.4) სახელმწიფო თეორემის

\[A\Delta U_\beta^{(0)} + B\partial_\beta^{(0)} \partial^T - \partial_{\alpha} \Delta \nu^{(0)} - \nu^{(0)} + F_\beta^{(0)} = 0, \]

\[A\Delta U_3^{(0)} + \partial_\alpha \Delta \nu^{(0)} - \nu^{(0)} + F_3^{(0)} = 0, \]
\[(U_j, F_j, T) = \sum_{m=1}^{\infty} (U_j^{(m)}, F_j^{(m)}, T^{(m)}) \varepsilon^m, \]

(2.9)

The text continues with a series of equations and explanatory notes, which are not fully transcribed here. The equations involve complex expressions and are part of a mathematical derivation. The text refers to previous equations and variables, indicating a continuation of the same argument or problem being discussed in the document. The specific details of the equations and their context are crucial for understanding the full implications and derivations presented.
(2.13)

\[\partial_z (P^{(1)}_{11} - P^{(1)}_{22} + i(P^{(1)}_{12} + P^{(1)}_{21})) + \partial_z (P^{(1)}_{11} + P^{(1)}_{22} + i(P^{(1)}_{12} - P^{(1)}_{21})) + P^{(1)}_+ = 0, \]

\[\partial_z P^{(1)}_+ + \partial_z \bar{P}^{(1)}_+ + F^{(1)}_3 = 0, \]

(2.14)

\[P^{(1)}_{11} - P^{(1)}_{22} + i(P^{(1)}_{12} + P^{(1)}_{21}) = 4M \partial_z U^{(1)}_+, \]

\[P^{(1)}_{11} + P^{(1)}_{22} + i(P^{(1)}_{12} - P^{(1)}_{21}) = 2B \theta^{(1)} - 4\lambda S \partial_z U^{(1)}_+ - 2B^t T^{(1)}, \]

\[P^{(1)}_+ = 2A \partial_z U^{(1)}_3, \quad F^{(1)}_3 = 2(B - \Lambda) \partial_z U^{(1)}_3, \quad P^{(1)}_{33} = \Lambda \theta^{(1)} - B^t T^{(1)}. \]

(2.15)

\[A \Delta U^{(1)}_+ + 2B \partial_z \theta^{(1)} - 2B^t \partial_z T^{(1)} = -F^{(1)}_+, \]

(2.16)

\[A \Delta U^{(1)}_3 = -F^{(1)}_3. \]

(2.15) და (2.16) სიდიაგები უამრავი გვარი აქვთ. პირველთან შედარებით ჩამოთვლილი ნამუშევრების ფიქსირების სარგებლობის წყვილებით ლოგიკური დამოუკიდებლობა გამოიწვევს სიდიაგის თეორემას ამოღებაში. მათემატიკური მეთოდებით გადაასახელებით სიდიაგის შიგნის ამოღების როლო ასევე გამოიყოფა. თუმცა (2.15) და (2.16) სიდიაგები თავისუფალი აქვთ [25], [6]. ხოლო $T^{(1)}$ ჯანსაღი წინართი და იგი წინამდებელი (1.16), (1.18) ან (1.19) განხილული ჯამაში სამართლიანი არხების ფორმულის, იმავე თანმედჯერ, თუ თან მართლი სასწავლო კარგი შეიძლება მოართული დიაგომები არსებობდეს (არსებულ ჯანსაღებზე ველი მართული $H = 0$).

(2.17) შესრულებით

\[\partial_z (4A \partial_z U^{(1)}_+ + 2B \theta^{(1)} - 2B^t T^{(1)}) = -F^{(1)}_+, \]

(2.18) შესრულებით

\[4A \partial_z U^{(1)}_+ + 2B \theta^{(1)} - 2B^t T^{(1)} = \frac{1}{\pi} \int \int \frac{F^{(1)}_+(\xi, \eta)}{\xi - z} d\xi d\eta + 4D \varphi(z), \]
\[\theta^{(1)} = \partial_x U_+^{(1)} + \partial_t \bar{U}_+^{(1)}, \]

and expands it as

\[4(A + B)\theta^{(1)} = 4D(\varphi'(\zeta) + \overline{\varphi'(\zeta)}) + 4B^t T^{(1)} + 2\text{Re} \left(\frac{1}{\pi} \int_\omega \int \frac{F_+^{(1)}(\xi, \eta)}{\zeta - z} \, d\xi \, d\eta \right). \] (2.18)

Using the conditions (4.20) and similar equations, it follows that \(A + B \) must be a positive definite matrix \((\text{det}(A + B) = (a_1 + b_1)(a_2 + b_2) - (c + d)^2 > 0, \)

where (2.18) is expanded to get

\[\theta^{(1)} = (A + B)^{-1} D(\varphi'(\zeta) + \overline{\varphi'(\zeta)}) + (A + B)^{-1} B^t T^{(1)} + \]

\[+ (A + B)^{-1} \text{Re} \left(\frac{1}{2\pi} \int_\omega \int \frac{F_+^{(1)}(\xi, \eta)}{\zeta - z} \, d\xi \, d\eta \right). \] (2.19)

Expanding \(\theta^{(1)} \) as (2.19) and similarly to (2.17) yields

\[2A \partial_x U_+^{(1)} = (2I - B(A + B)^{-1}) D\varphi'(\zeta) - B(A + B)^{-1} D\overline{\varphi'(z)} + \]

\[+ (I - B(A + B)^{-1}) B^t T^{(1)} + (2I - B(A + B)^{-1}) \frac{1}{4\pi} \int_\omega \int \frac{F_+^{(1)}(\xi, \eta)}{\zeta - z} \, d\xi \, d\eta - \]

\[- B(A + B)^{-1} \frac{1}{4\pi} \int_\omega \int \frac{F_+^{(1)}(\xi, \eta)}{\zeta - z} \, d\xi \, d\eta. \] (2.20)

Note that \(I - 2x2 \) is a positive definite matrix. Hence, if \(A \) is a positive definite matrix, then \(A + B \) must be a positive definite matrix \((\text{det}(A + B) > 0, \)

where (2.20) is expanded to get

\[2U_+^{(1)} = A^{-1}(2I - B(A + B)^{-1}) D\varphi'(\zeta) - A^{-1} B(A + B)^{-1} D\overline{\varphi'(z)} - \overline{\psi(z)} + \]

\[+ (A + B)^{-1} B^t T^{(1)} dz - A^{-1} (2I - B(A + B)^{-1}) \frac{1}{2\pi} \int_\omega F_+(\xi, \eta) \ln |\zeta - z| \, d\xi \, d\eta + \]

\[+ A^{-1} B(A + B)^{-1} \frac{1}{2\pi} \int_\omega \bar{F}_{+}^{(1)}(\xi, \eta) \frac{z - \xi}{\zeta - z} \, d\xi \, d\eta, \] (2.21)

where \(\psi(z) = (\psi_1(z), \psi_2(z))^T \) - the eigenfunctions of the operators. Similarly, we get

\[\psi_1(z), \psi_2(z) \] satisfy the conditions (2.15) and similar equations. Hence, \(\psi_1(z), \psi_2(z) \) are the eigenfunctions of the operators.

Similarly, \(F_+^{(1)} = 0 \) and (2.21) is expanded to get

\[D = (A + B) B^{-1} A, \]

where \(D \) is the operator.

66
2U_{+}^{(1)} = A^{*} \varphi(z) - z \bar{\varphi'(z)} - \bar{\psi(z)} + (A + B)^{-1}B^{\dagger} \int T^{(1)}(z) d\xi, \quad (2.22)

სადაც $A^{*} = I + 2B^{-1}A$. (2.16) სახსრების არსებობა რა მოხდებოდა ზედამხედველად

\begin{equation}
2AU_{3}^{(1)} = f(z) + \frac{1}{\pi} \int \int F_{3}^{(1)}(\xi, \eta) \ln |z - \xi| d\xi d\eta, \quad (2.23)
\end{equation}

სადაც $f(z) = (f_{1}(z), f_{2}(z))^{T}$ იზეგ ნებისმიერ ანტივერსიულ ფუნქციებმა შედეგილია ჰიდრო-მაჰერეთობა.

(2.22) და (2.23) ფორმულები (ამ ფუნქციებთან დაკავშირებით $F_{3}^{(1)} = 0$) ჩატვით (2.14)-ში, შედგება

\begin{equation}
P_{22}^{(1)} - P_{11}^{(1)} + i(P_{12}^{(1)} + P_{21}^{(1)}) = 2M \left(\bar{\varphi''}(z) + \psi'(z) - (A + B)^{-1}B^{\dagger} \int \delta_{z} T^{(1)}(z) d\xi \right), \quad (2.24)
\end{equation}

\begin{equation}
P_{11}^{(1)} + P_{22}^{(1)} + i(P_{12}^{(1)} - P_{21}^{(1)}) = 2[(A - \lambda SA^{*})\varphi'(z) + M\varphi'(z)] - M(A + B)^{-1}B^{\dagger}T^{(1)}(z), \quad (2.25)
\end{equation}

\begin{equation}
P_{+}^{(1)} = \bar{f'(z)}, \quad P_{-}^{(1)} = (B - \Lambda)A^{-1}f'(z). \quad (2.26)
\end{equation}

თუ შემოქმედება არის გამჭვირვალში [25]

$\Phi(z) = (\Phi_{1}(z), \Phi_{2}(z))^{T} : = (\varphi_{1}'(z), \varphi_{2}'(z))^{T}$, \quad $\Psi(z) = (\Psi_{1}(z), \Psi_{2}(z))^{T} : = (\psi_{1}'(z), \psi_{2}'(z))^{T}$,

ამით (2.24) და (2.25) ფორმულები შეგვიძლია გასაგებით შედეგილი შედეგი შეასრულა

\begin{equation}
P_{22}^{(1)} - P_{11}^{(1)} + i(P_{12}^{(1)} + P_{21}^{(1)}) = 2M[\bar{\varphi'}(z) + \Psi(z) - (A + B)^{-1}B^{\dagger} \int \delta_{z} T^{(1)}(z) d\xi], \quad (2.27)
\end{equation}

\begin{equation}
P_{11}^{(1)} + P_{22}^{(1)} + i(P_{12}^{(1)} - P_{21}^{(1)}) = 2[(A - \lambda SA^{*})\varphi'(z) + M\varphi'(z)] - M(A + B)^{-1}B^{\dagger}T^{(1)}(z). \quad (2.28)
\end{equation}

\section{3. \quad N = 0 მოხდებოდა. შედეგით ნახია}

1. გართობულია გახსნილი ხორცის ჰიპოთეზა ნებისმიერ პოლარულ მოქანიკურ შედეგი ნებისმიერ შემთხვევაში $N = 0$ მოხდებოდა შედეგით ნახია. R რეჟიმების დარღვევის მარგალიტია რეგულირებული სიათობით შეფასება შერედილი ადგილი სივრცე ((10). გვ. 54-61, [59])

\begin{equation}
r = Rn, \quad (3.1)
\end{equation}
n - სრული საგარეულო გრაფიკული განმარხველად ჩამოწერა. (3.1) კვლავისას მონარ
მავალი გამართულა შმაგალა ლიმიტით

$$r_\alpha = R n_\alpha = -Rb_\alpha r_\beta = -Rb_\alpha r_\beta.$$

არჩევს

$$a_{\alpha\beta} = -R b_{\alpha\beta}, \quad a_\beta = -R b_\beta, \quad k_1 = k_2 = -\frac{1}{R}, \quad H = -\frac{1}{R}, \quad K = \frac{1}{R^2}. \quad (3.2)$$

(3.2) დონულების ძირითი $Q = 0$ და (114) გამოყენებით სივრცე შეიძლება იქომით

$$\Lambda^{-1} \partial_z (\tau_1 - \tau_2 + i(\tau_1 + \tau_2)) + \partial_z (\tau_1^2 + \tau_2^2 + i(\tau_1^2 - \tau_2^2)) + \frac{1}{R} \tau_+ + X_+ = 0,$$

$$\Lambda^{-1} (\partial_z \tau_+ + \partial_z \bar{\tau}_+) - \frac{1}{R} (\tau_1^2 + \tau_2^2) + X_3 = 0.$$

(პითა-ცხერთის სივრცე პითა-ცხერთის კომპლექსის ზოლის ლოკალურ-

ძალების წარსაქმება (შ. (16), (112))

$$\tau_1 - \tau_2 + i(\tau_1 + \tau_2) = (P_1 - P_2 + (iP_1 + iP_2 + P_3)) \odot (I_0 + \Lambda^{-1} \partial_z U_+ + \frac{1}{R} U_3) +$$

$$+(P_1^1 + P_2^2 - i(P_1^2 - P_2^1)) \odot \Lambda^{-1} \partial_z U^+ - \frac{1}{R} P_+ \odot U_+,$$

$$\tau_1 + \tau_2 + i(\tau_1 - \tau_2) = (P_1^1 + P_2^2 + i(P_1^2 - P_2^1)) \odot (I_0 + \Lambda^{-1} \partial_z U_+ + \frac{1}{R} U_3) +$$

$$+(P_1 - P_2 - (iP_1 + iP_2 + P_3)) \odot \Lambda^{-1} \partial_z U^+ - \frac{1}{R} \bar{P}_+ \odot U^+,$$

$$\tau_+ = P_+ + (P_1 - P_2 + iP_1) \odot (\Lambda^{-1} \partial_z U_3 - \frac{1}{2R} \bar{U}^+ +$$

$$+P \odot (I_0 + \Lambda^{-1} \partial_z U_+ + \frac{1}{R} U_3) + \frac{1}{R} U_3) \odot \partial_z U^+,$$

(პითა-ცხერთის სივრცე პითა-ცხერთის კომპლექსის ზოლის ლოკალურ-

ძალების წარსაქმება (შ. (16), (112))

$$P_1 - P_2 + iP_1 + iP_2 + P_3 = 4M(\Lambda^{-1} \partial_z U^+ + \Lambda^{-1} \partial_z U^+ \odot \partial_z U^+ +$$

$$+\partial_z U_3 \odot \partial_z U_3 + \frac{1}{R} \Lambda^{-1} \partial_z U^+ \odot U_3 - \frac{1}{R} \partial_z U_3 \odot U_+ + \frac{1}{4R^2} U_+ \odot U_+),$$

$$P_1^1 + P_2^2 + iP_1^2 + P_2^1 = 2B^2 - 4\lambda_5 S \Lambda^{-1} \partial_z U_+ + \frac{1}{R} (B - \lambda_5 S) U_3 +$$

$$+2(\Lambda + M) \left[\Lambda^{-1} \partial_z U_3 \odot U_+ + \Lambda^{-1} \partial_z U_3 \odot U_3 \odot \bar{U}_+ \right] + \Lambda \frac{1}{R} \Lambda^{-1} \partial_z U_+ \odot U_3 -$$

$$\frac{1}{R} \Lambda^{-1} (\partial_z U_3 \odot U_+ + \partial_z U_3 \odot \bar{U}_+),$$

$$P_+ = P_1 + iP_2 = A(2\partial_z U_3 - \frac{1}{R} U_3) -$$

$$-\frac{1}{R} M(\partial_z U^+ \odot U_+ + \partial_z U^+ \odot \bar{U}_+ + \frac{1}{R} U_3 \odot U_+),$$

$$+P = P_1 + iP_2 = (B - \lambda)(2\partial_z U_3 - \frac{1}{R} U_3) -$$

$$-\frac{1}{R} (\partial_z U^+ \odot U_+ + \partial_z U^+ \odot \bar{U}_+ + \frac{1}{R} U_3 \odot U_+),$$

68
წინა პარაგრაფის სახელმძღვართვით, ზედამხედველი თანამედროვე სიტუაცია გამოყენების ფსიქოლოგიის პრობლემებში ხშირად გამოიყენება ე მაგალით პროგრესიული ტენკო (შ.2.9)). ამ ზედამხედველ- წყლის \(r_{ij}^{(1)} = p_{ij}^{(1)} \) და პრაქტიკულ მიმართულება ქრონიკალი კანსტატი გამოხატავს სივრცეს ხარჯარი ჰიპოთეზების სივრცჰომრივოდება სკელეტონური განათვალისწინების

\[
\lambda^{-1} \partial_z (r_{11}^{(1)} - r_{22}^{(1)} + i(r_{12}^{(1)} + r_{21}^{(1)})) + \partial_z (r_{11}^{(1)} + r_{22}^{(1)}) + i(r_{12}^{(1)} - r_{21}^{(1)}) + \frac{1}{R} P_{+}^{(1)} + X_{+}^{(1)} = 0,
\]

\[
\lambda^{-1} (\partial_z P_{+}^{(1)} + \partial_x P_{+}^{(1)}) - \frac{1}{R} \text{Re}(P_{1}^{(1)} + P_{2}^{(1)}) + i(P_{1}^{(1)} - P_{2}^{(1)}) + X_{3}^{(1)} = 0,
\]

\[
P_{11}^{(1)} - P_{22}^{(1)} + i(P_{12}^{(1)} + P_{21}^{(1)}) = 4M(\lambda \partial_z U^{(1)}) = 4M \lambda \partial_z (\lambda^{-1} U_{+}^{(1)}),
\]

\[
P_{1}^{(1)} + P_{2}^{(1)} + i(P_{1}^{(1)} - P_{2}^{(1)}) = 2B\theta^{(1)} + \frac{4}{R} (B - \lambda_5 S) U_{3}^{(1)} + 4\lambda_5 S \lambda^{-1} \partial_z U_{+}^{(1)},
\]

\[
P_{+}^{(1)} = A(2\partial_z U_{3}^{(1)} - \frac{1}{R} U_{+}^{(1)}),
\]

\[
+ P_{+}^{(1)} = (B - \Lambda)(2\partial_z U_{3}^{(1)} - \frac{1}{R} U_{+}^{(1)}),
\]

სადაც

\[
\theta^{(1)} = \lambda^{-1} (\partial_z U_{+}^{(1)} + \partial_x U_{+}^{(1)}).
\]

(3.3)-(3.8) გამოყენებით ჩაფიქრებული სივრცეში მიმართული ფიზიკის პრობლემები განსაზღვრებს სათავსო სიტუაციაში ჰომოგენური სივრცემდება მათემატიკაში, (1.8)-ში თანახული, სადაც

\[
A \nabla^{a} \nabla^{a} U^{\delta}^{(1)} + B \nabla^{a} \nabla^{a} U^{\alpha(\omega)} + \frac{2\lambda_{5}}{R^{2}} S U^{(1)\beta} + \frac{1}{R} \tilde{A} \nabla^{\beta} U_{3}^{(1)} + F^{(1)\beta} = 0,
\]

\[
A \nabla^{a} \nabla^{a} U_{3}^{(1)} - \frac{4}{R^{2}} (\Lambda + M) U_{3}^{(1)} - \frac{1}{R} \tilde{A} \nabla^{a} U^{\alpha(\omega)} + F_{3}^{(1)} = 0,
\]

სადაც

\[
\hat{\Lambda} := A + 2M + 2\Lambda = \begin{pmatrix}
2\lambda_{1} + 3\mu_{1} - \lambda_{5} - \frac{2\alpha_{2}\rho_{2}}{\rho} & 2\lambda_{3} + 3\mu_{3} + \lambda_{5} - \frac{2\alpha_{2}\rho_{1}}{\rho} \\
2\lambda_{3} + 3\mu_{3} + \lambda_{5} - \frac{2\alpha_{2}\rho_{1}}{\rho} & 2\lambda_{2} + 3\mu_{2} - \lambda_{5} + \frac{2\alpha_{2}\rho_{1}}{\rho}
\end{pmatrix}.
\]

მითხარის, რომ სათავსო სივრცეში ამოცანები ჰომოგენი სივრცა იყოფა

\[
x = tg^{\frac{\theta}{2}} \cos \varphi, \quad y = tg^{\frac{\theta}{2}} \sin \varphi,
\]

სადაც \(\varphi, \theta \) ანცენტრული გენერალური ჰომოგენი სივრცეში თარიღდება.

\[
\hat{\Lambda} = \frac{4R^{2}}{(1 + x^{2} + y^{2})^{2}} = \frac{4R^{2}}{(1 + z^{2})^{2}} = 4R^{2} \cos^{4} \frac{\theta}{2}.
\]

ისი და შეფასებათ

\[
z = tg^{\frac{\theta}{2}} e^{j\varphi} = x + iy.
\]
\[4M \Lambda^{-1} \partial_z \Lambda^{-1} \partial_x \Lambda^{-1} U_+^{(1)} + 4M \Lambda^{-1} \partial_y \Lambda^{-1} \partial_y \Lambda^{-1} U_+^{(1)} + \frac{1}{R} \Lambda^{-1} (\partial_x P_+^{(1)} + \partial_y P_+^{(1)}) + \Lambda^{-1} (\partial_x X_+^{(1)} + \partial_y X_+^{(1)}) = 0. \]

(3.12)

\[\Lambda^{-1} \partial_z \Lambda^{-1} \partial_x \Lambda^{-1} \partial_x \Lambda^{-1} U_+ = \frac{1}{4} \left(\nabla^2 + \frac{2}{R^2} \right) \Lambda^{-1} \partial_z U_+, \]

(3.13)

where \(\nabla^2 - \frac{1}{R^2} \).

The solutions \((\Lambda^{-1} \partial_z \Lambda^{-1} \partial_x \Lambda^{-1} \partial_x \Lambda^{-1} U_+)\) are obtained by solving the following system:

\[\left(\nabla^2 + \frac{2}{R^2} \right) \left(M \theta^{(1)} + \frac{1}{2} (P_1^{(1)} + P_2^{(1)}) \right) + \lambda_0^{(1)} = 0, \]

(3.14)

where

\[\lambda_0^{(1)} = (X^{(1)}_0, X^{(1)}_0) = \Lambda^{-1} (\partial_x X_+^{(1)} + \partial_y X_+^{(1)}). \]

(3.6)

The solutions \(P_1^{(1)} + P_2^{(1)} = 2(B - \lambda S) \left(\theta^{(1)} + \frac{2}{R} U_3^{(1)} \right) \).

(3.15)

From (3.14) to (3.15), we have

\[\left(\nabla^2 + \frac{2}{R^2} \right) \left((A + B) \theta^{(1)} + \frac{2}{R} (B - \lambda S) U_3^{(1)} \right) + \lambda_0^{(1)} = 0. \]

The eigenfunctions \(\varphi(z) \) and \(\psi(z) \) satisfy the following system:

\[(A + B) \theta^{(1)} + \frac{2}{R} (B - \lambda S) U_3^{(1)} = D \omega_1 + \omega_0, \]

(3.16)

where \(\omega_1 = (\omega_1', \omega_1'') \) and \(\omega_0 = (\omega_0', \omega_0'') \).

(6)
სახურ შეფარდება ახლავს ვალიური ჭერის განზრახვის შეთვლით
graphical სიმულაცია.

\[
\omega_0 = -\frac{1}{2\pi} \int \int \frac{1 - |z - \zeta|^2}{1 + |z - \zeta|^2} \ln |z - \zeta| + 1 \right) X_0^{(1)}(\zeta) d\gamma.
\]

t რაც აღსინდა (3.7) და (3.15) ფორმულათ (3.4) გამოყენებულია. მოცემული

\[
A \nabla^2 U_3^{(1)} - \frac{4}{R^2}(\Lambda + M) U_3^{(1)} - \frac{1}{R} \Lambda \theta^{(1)} + X_3^{(1)} = 0. \tag{3.17}
\]

ჯგუფშობის შამთია შეფარდების დაცვის არჩევნით, \(A + B\) შეფარდების არჩევნით გამოყენებით. აქვთ (3.16) სიმულაცია გამოყენებულ

\[
\theta^{(1)} = -\frac{2}{R} (A + B)^{-1}(\Lambda + M) U_3^{(1)} + (A + B)^{-1} D \omega_1 + (A + B)^{-1} \omega_0. \tag{3.18}
\]

(3.18)-მ (3.17) ფორმულურ ქროშის შედეგად შედგება

\[
\nabla^2 U_3^{(1)} - \frac{2}{R^2} A^{-1}(2I - \tilde{A}(A + B)^{-1})(\Lambda + M) U_3^{(1)} = \frac{1}{R} A^{-1} \tilde{A}(A + B)^{-1}(D \omega_1 + \omega_0) - A^{-1} X_3^{(1)}, \tag{3.19}
\]

მოცემული \(2I - \tilde{A}(A + B)^{-1} = (B - \Lambda)(A + B)^{-1}\) დამოუკიდებელია გამოთვლილი, რომ
\(A^{-1}, B - \Lambda, (A + B)^{-1}, \Lambda + M\) შეფარდები სიმულაციაში გამოყენდება მაგარი ბრუნვით. მოცემული \(A^{-1}(B - \Lambda)(A + B)^{-1}(\Lambda + M)\) მაგარი ბრუნა მცირედ სახელის ფორმა.

\[
\omega_2 = (\omega', \omega'')^T = L \chi,
\]

\[
\chi = (\chi_1, \chi_2)^T, \quad \chi_0 შეფარდები შედეგ გამოყენებათ ხარჯი არჩევნით
\]

\[
\nabla^2 \chi_0 - \frac{2}{R^2} \Delta \chi_0 = 0, \quad (\alpha ხორცი არ ეკუთვნის)
\]

\(L - 2 \times 2\) ნახატახ, რომლის არჩევნით და ჯგუფთან ჭერის განზრახვამდე არ და არ საჭიროებთ გამოყენების მცირევალახში ხარჯი არჩევნით გამოყენებით. \(D\) მაგარი ბრუნა შედეგად

\[
D = -\frac{2}{R} (A + B) \tilde{A}^{-1} A(2I - \tilde{A}(A + B)^{-1})(\Lambda + M) + I.
\]

\(V_0\) ჭერის გამოყენებული

\[
\nabla^2 U_3^{(1)} - \frac{2}{R^2} A^{-1}(2I - \tilde{A}(A + B)^{-1})(\Lambda + M) U_3^{(1)} = -A^{-1} X_3^{(1)} + \frac{1}{R} A^{-1} \tilde{A}(A + B)^{-1} \omega_0
\]

71
განვიხილოთ ტერა აქტიურა, რომელთა ზერდიდანჯურში შემდეგ შთაბეჭდა [6]

\[V_0 = -\mathcal{L} \frac{A^{-1}}{2\pi} \int \int Q_\kappa \left(\frac{1 - |z - \zeta|^2}{1 + |z - \zeta|^2} \right) \overline{X}(\zeta) d\kappa, \]

სადაც \(Q_\kappa = (Q_{k1}, Q_{k2})^T \) - მოცურ ტერა ზერდიდანჯურში ფერაქტიული შეძლებელი სახელწოდებით.

\[k_\alpha = -\frac{1}{2} + \frac{i}{2} \sqrt{8 \kappa_\alpha - 1} \quad (\text{თუ} \quad \kappa_\alpha > \frac{1}{8}). \]

მიუხედავად გრადიენტის გენერალიზებული \(X_1^{(1)} \) = 0. ამიტომ \(\omega_0 = V_0 = 0 \). მიკროსკოპიური გამჭვიდრებელი შეიძლება შეიძლო ან შეიძლო შეფარდებით. (3.20) ფიქსირდება რამდენ (3.18)-ში, მიგვაწობთ

\[\theta^{(1)} = A_1 \omega_1 + A_2 \omega_2, \quad (3.21) \]

სადაც \(A_1 \) და \(A_2 \) არიუნებულივი შედგენილი მნიშვნელობები

\[A_1 = (A + B)^{-1}(D - \frac{2}{R}(\Lambda + M)), \quad A_2 = -\frac{2}{R}(A + B)^{-1}(\Lambda + M). \]

(3.9)-ს გამჭვიდრება, (3.21) ფიქსირდება შეძლებელი

\[\partial_z U_+^{(1)} + \partial_{\bar{z}} \overline{U}_+^{(1)} = -2R^2 \partial_{zz}(A_1 \omega_1 - A_2 \dot{A}^{-1} \omega_2), \quad (3.22) \]

სადაც

\[\dot{A} = A^{-1}(2I - \overline{A}(A + B)^{-1})(\Lambda + M). \]

(3.22)-ს გამჭვიდრება, რომ \(U_+^{(1)} \) ფერაქტიული შედგენილი შედგენილ

\[U_+^{(1)} = -R^2 \partial_{\bar{z}}(A_1 \omega_1 - A_2 \dot{A}^{-1} \omega_2 + iv), \]

სადაც \(v = (v', v'')^T \) - ჯირ-ჯირით ტანსაცმელი ფუნქციის ფერაქტიული ფუნქციონალური სახელწოდებით.

ამიტომ, \(U_+^{(1)} \) ფერაქტიული შედგენილ შთაბეჭდა

\[U_+^{(1)} = \partial_{\bar{z}} V, \]

სადაც

\[V = (V', V'')^T = -R^2(A_1 \omega_1 - A_2 \dot{A}^{-1} \omega_2 + iv). \quad (3.23) \]

\(v \) ფუნქცია ალგებრული ფუნქცია შეიძლება, რომ დაამთავრებოდეს (3.3) განსაკუთრებით. შეფარდები (3.23) გამჭვიდრება (3.5)-(3.7) გამჭვიდრებების, სოლით მიკროსკოპიურ ტანსაცმელი რამდენ (3.3) გამჭვიდრებით. თუ განიხილოთ მნიშვნელი შედგენილ პრობლემა განსაკუთრებით

\[\Lambda^{-1} \partial_z \Lambda \partial_{\bar{z}} \Lambda^{-1} \partial_{\bar{z}} = \frac{1}{4} \partial_{\bar{z}} \left(\nabla^2 + \frac{2}{R^2} \right) u, \]

72
$$\partial_z [A \nabla^2 V + \frac{B - \Lambda}{R^2} V + \frac{B}{2} \nabla^2 (V + \overline{V}) + \frac{2A}{R^2} U_3^{(1)}] = 0.$$

თუ აგნოსტური ლოსილობის ცვლილება

$$A \nabla^2 V + \frac{B - \Lambda}{R^2} V + \frac{B}{2} \nabla^2 (V + \overline{V}) + \frac{2A}{R^2} U_3^{(1)} = \psi(z), \quad (3.24)$$

სადაც $\psi(z) = (\psi_1(z), \psi_2(z))^T$ - ფუნქცია მათემატიკური დინამიკი. (3.24)-ის თუ ხორცები V-ს (3.23) გამოთვლილია, ლოგართიმობით, რომ $\psi(z)$ განვითარების პრინციპი მართველი შიგნი წინააღმდეგმდე სიდიდით, გ.ა. $\psi(z) = i(c_1, c_2)^T = iC$ და გვაქვს

$$A \nabla^2 v + \frac{1}{R^2} (B - \Lambda) v = C,$$

ამით v_1 და v_2 გამოთვლილიყვან აგანილები შიგნი ბიკარგავი, ანუ $\Delta v = 0$ და გვაქვს

$$\nabla^2 v + \frac{1}{R^2} \Lambda^{-1} (B - \Lambda) v = 0.$$

თუ აგნოსტური განმარტების შიგნი ახალგაზრდა შესახებ სახით

$$v = L^0 \chi^0,$$

სადაც $\chi^0 = (\chi^0_1, \chi^0_2)^T$, χ^0 შეთავაზებით შესახებ განმარტებამ შიგნი ახალგაზრდა

$$\nabla^2 \chi^0_\alpha + \frac{1}{R^2} \alpha_\alpha \chi^0_\alpha = 0, \quad (\alpha \text{ დედგნით არ იმუშავებს!})$$

$\alpha_1, \alpha_2 = \Lambda^{-1} (B - \Lambda)$ აქვს იმ საერთოდ როგორც L^0 შეთავაზები შეთავაზები შეთავაზები შეთავაზები შეთავაზები შეთავაზები. გარემო, სავალი ფაქტორები საერთოდ გარემო $N = 0$ მათემატიკური სტრუქტური განმარტება შიგნი ახალგაზრდა შესახებ ახალგაზრდა შესახებ ახალგაზრდა შესახებ

$$U_3^{(1)} = \omega_1 + \omega_2 = \omega_1 + L \chi, \quad (3.25)$$

$$U_4^{(1)} = -R^2 \partial_z [A_1 \omega_1 - A_2 L \Lambda \chi - iL^0 \chi^0], \quad (3.26)$$

სადაც K აღრიცხვა შესახებ მაიუნტ

$$K = \left(\begin{array}{cc} \frac{1}{\alpha_1} & 0 \\ 0 & \frac{1}{\alpha_2} \end{array} \right).$$

ამ გამოკვეთის პირველ მეტაფასტიკური განმარტება ახალგაზრდა შესახებ ასრულება შეთავაზები საერთოდ განმარტება შეთავაზები შიგნი ახალგაზრდა შესახებ ახალგაზრდა
\[z = \tan \frac{\theta}{2} \] კომპლექსური ფუქტური ფუნქციიდან შესახებ ნეიტრაილური ახალგაზრდული ფუქტური სახელწოდებით, რომლითაც მიღწეული სხვადასხვა შესახებ შეითავის შეცვლა სადონო- უსი სინამლოვნი პირობებში დამატებით განვითარებით.

\[(3.25), (3.26) \] ლინიურ ქონებაში (3.5)-(3.8) თარაგაობათა შესახებ, პირველი მაქ- სათ უნდათ მოქმედ კომპლექსური კომპლექსურ გამოკვლევაში ღრმად შემოღრმები ფუნქციონალიზმი საქვითოდ.

2. მთლიანად დამკვიდრი სტრუქტური გარიშა. აქვთ განახორციელებული ბირთვებზე ღრმად სტრუქტური გარიში შემოღრმინა, რაც (3.11) ლინიურ ქონებაში ვჯერდე ჩვეთ ქონებაში როგორც არა და ჭეშმარიტ ჩამოთვლით

\[\cos \theta \equiv 1, \quad \sin \theta \equiv 0. \]

სწორად გუმბობრობს

\[A \equiv 4R^2, \quad \Gamma_{\theta} \equiv 0. \]

შეიარაღება მიღწეული, რომ \(x \) და \(y \) ლინიური კომპლექსური, გარიშა არის (3.10) გამოკვლევაში სხვაგვარა საჭიროად რ\(R^2 \)-ს თარაგაობათა შესახებ მოქმედება. შექმებით მოქმედები გამოღვეული გამოღვეულ შესახებ სხვაობს. ფუნქციონალი თით ჯერთადიმომარინა შემოღრმინა

\[
\begin{align*}
A\Delta U_\theta + B\partial_\theta T + \frac{1}{R} \hat{A} \partial_\theta U_3 - B^T \partial_\theta T + F_\theta &= 0, \\
A\Delta U_3 - \frac{1}{R} \hat{A} \theta + \frac{2}{R} B^T T + F_3 &= 0,
\end{align*}
\]

სადაც \(\theta = \partial_\theta U_3 \), საით \(T \) გამოღვეული შემოღრმინა შეხვდება როგორც

\[\Delta T - \alpha T = \gamma. \]

სადაც \(\alpha = 2 \times 2 \) გარეკვეთით მათემატიკა, ხოლო \(\gamma \) - სტრუქტური გარიშა, რომელს გამოიყენება გარიშით გარიშით გარიშათა არსებობით მოქმედებით სისტემის პირობებში.

განვითარებით, \(F_j = 0 \) და მონაცემი (3.27) საქვებ კომპლექსურ სითხით

\[
\begin{align*}
A\Delta U_+ + 2B \partial_\theta T + \frac{2}{R} \hat{A} \partial_\theta U_3 - 2B^T \partial_\theta T &= 0, \\
A\Delta U_3 - \frac{1}{R} \hat{A} \theta + \frac{2}{R} B^T T &= 0,
\end{align*}
\]

ამ გუმბობრომის სითხის პირველ გამოღვეულ სითხეს შეგვამოიღოთ ლეიტენი ლანგლადი

\[2A \partial_\theta U_+ + B \theta + \frac{A}{R} U_3 = D \varphi(z) + B^T T, \]

სადაც \(\varphi(z) = (\varphi_1(z), \varphi_2(z))^T \) ნეიტრაილური ახალგაზრდული ფუქტური ფუნქციას შეიცავთ სტრუქ- ტური გარიშა, \(D \) -ბოლოჯმეტი 2 × 2 ბოლოჯმეტი გარიშვით გარიშა, რომლითაც შექმით ლეიტენი ლანგლადი. თუ შეტანილი (3.29) გამოღვეულზე თავის შეფასებაში და გარეუ- ლანგლადი, რომ

\[\theta = \partial_\theta U_+ + \partial_\theta U, \]

74
\begin{align}
(A + B)\theta + \frac{\hat{A}}{R} U_3 &= \frac{1}{2} D(\varphi'(z) + \varphi'(\bar{z})) + B'T. \\
(3.30)
\end{align}

(3.28) სითხილი მოქცევი გაიმართებული გამჭვონ

\begin{align}
\theta = R\hat{A}^{-1} A \Delta U_3 + 2\hat{A}^{-1} B'T. \\
(3.31)
\end{align}

(3.31) ფორმულა (3.30)-ში დამოუკიდებლად

\begin{align}
\Delta U_3 + \frac{1}{R^2} A^{-1} \hat{A}(A + B)^{-1} \Delta U_3 &= \frac{1}{2R} A^{-1} \hat{A}(A + B)^{-1} D(\varphi'(z) + \varphi'(\bar{z}))+ \\
&+ \frac{A^{-1}}{R}(\hat{A}(A + B)^{-1} - 2I) B'T. \\
(3.32)
\end{align}

(3.32) გამოყენებით ქონდა ამოირჩეოდა მაგგალი სახით

\begin{align}
U_3 = \frac{R}{2} \hat{A}^{-1} D(\varphi'(z) + \varphi'(\bar{z}))+ \mathcal{L}x(z, \bar{z}) + A_0 T - R^2 \hat{A}^{-1} A_0 \gamma^t, \\
(3.33)
\end{align}

სადაც \(\chi(z, \bar{z}) = (\chi_1(z, \bar{z}), \chi_2(z, \bar{z}))^T \) პულამონეს ქონდა გამოყენებით ქონდა ამოირჩეოდა (\(a_1 \) და \(a_2 \) \(\hat{A} \) მაგიკის საართულები შექმნული)

\begin{align}
\Delta \chi_\alpha + \frac{a_\alpha}{R^2} \chi_\alpha = 0,
\end{align}

\(\mathcal{L} \) მაგიკის სვეტები \(a_1 \) და \(a_2 \) საართული რეაგირებენ ქმნასპინები საართული გამოყენებით. \(A_0 \) \(-2 \times 2 \) მატრიცა, რომლითაც ქრომილილი ქმნილი მაგიკის შექმნათ გამოყენებით ამოირჩეოდა

\begin{align}
A_0 \gamma^t + \frac{1}{R^2} \hat{A} A_0 = \frac{1}{R} A^{-1} (\hat{A}(A + B)^{-1} - 2I) B'.
\end{align}

(3.33) ფორმულა (3.30)-ში, დამოუკიდებლად

\begin{align}
\theta = (A + B)^{-1} \left[-\frac{\hat{A}}{R} \mathcal{L} x(z, \bar{z}) + \left(B^t - \frac{\hat{A} A_0}{R} \right) T + R\hat{A}^{-1} A_0 \gamma^t \right]. \\
(3.34)
\end{align}

(3.34) და (3.34) ფორმულებში (3.29) ფორმულა და განყოფილებით, მოხდება ქონდა უ+ ზეთში ქმნათ ფორმულაში

\begin{align}
2U_+ = \varphi(z) - z\varphi'(z) - \psi(z) + 4RA^* \mathcal{L} \psi(z, \bar{z}) + A^0 \int T dz + RA^* A_0 \gamma^t z,
\end{align}

(3.34) ახლოვა ქონდა \(\psi(z) = (\psi_1(z), \psi_2(z))^T \) ბირთოლობით ართულობით ფორმულათ, ხოლო \(A^* \) და \(A^0 \) მაგიკის ქმნილი გამჭვონ ქონდა ფორმულათ

\begin{align}
A^* = (A + B)^{-1} \hat{A}^{-1}, \quad A^0 = B^t - B(A + B)^{-1} \left(B^t - \frac{\hat{A} A_0}{R} \right) - \frac{\hat{A} A_0}{R}.
\end{align}
D მაგივრავადა ლაგავდება უმთავრეს დონეზე $D = 2A$ სხვით. ამიტომ, (3.27) სახის ფორმა შესაბამის როლი ანგარიშების ფუნქციისად და რომ პირობებთან შედარებით სახალვებო ფუნქციის ნახევრები. რთულია უფრო პროქარიტალურად, რომ ფორმულით უთან მფლობელი ლაგავით უთან მფლობელი ფორმულა ნახევრებს (P₁ = 0)

\[
A \Delta U_+ + 2B \partial_0 \theta - 2B^t \partial_4 T = 0,
\]

\[
A \Delta U_3 - \frac{1}{R} \hat{\theta} + \frac{2}{R} B^t T = 0. \tag{3.35}
\]

(3.35) სახის ფორმა პირველი გამოყენებით პირობებთან შედარებით და იქ გამოყენება შემდგომნი გამოფენა (2.15) გამოყენებით, რომლის მიტოვით პირობები რითაც შედარებით გამოფენა (2.22) ფუნქციებზე ბალახსაქით (2.19) ფუნქციებზე თანაბრძანი ფორმულა თანაბრძანი ფორმულებით

\[
\theta = B^{-1}A(\varphi'(z) + \bar{\varphi}'(z)) + (A + B)^{-1}B^t T. \tag{3.36}
\]

ხელით (3.36) ფორმულით (3.35) სახის შემდგომ გამოყენებით, მოქმედებით

\[
\Delta U_3 = \frac{1}{R} A^{-1}[\hat{A} B^{-1}A(\varphi'(z) + \bar{\varphi}'(z)) + \hat{A}(A + B)^{-1} - 2I)B^t T]. \tag{3.37}
\]

სახლით რითაც, რომ U_3 გამოყენებით შედარები პირობებთან შედარებით გამოყენებით

\[
\Delta \Delta U_3 = \frac{1}{R} A^{-1}[\hat{A}(A + B)^{-1} - 2I)B^t (\alpha^t T + \gamma'). \tag{3.38}
\]

(3.37) გამოყენებით გამოყენების შედარება ფუნქციები თანაბრძანი ფუნქციები

\[
U_3 = \frac{1}{4R_1} A^{-1} \hat{A} B^{-1}A(\varphi(z) + \bar{\varphi}(z)) + g(z) + \bar{g}(z) + \frac{1}{4R} A^{-1}(\hat{A}(A + B)^{-1} - 2I)B^t \int dz \int T dz, \tag{3.39}
\]

სადაც $g(z) = (g_1(z), g_2(z))^T$ - გამოყვანილი ანგარიშური ფუნქცია.

გამოყვანილი ფუნქციები გამოყვანილი ფუნქციებით გამოყვანილა (2.27), (2.28) ფუნქციები, ხოლო P_+ და P ფორმულები გამოყვანილი (3.7), (3.8) ფუნქციების სახსრებით, სადაც ფორმულები (2.22) და (3.38) ფუნქციები თანაბრძანები

\[
P_+ = \frac{1}{2R} [(\hat{A} B^{-1}A - AA^*) \varphi(z) + (\hat{A} B^{-1}A + A) \bar{\varphi}(z)] + 2A g(z) + \frac{1}{2R} [(\hat{A} + B)(A + B)^{-1} - 3I] B^t \int T dz, \tag{3.40}
\]

\[
+ P = (B - A) A^{-1} P_+. \tag{3.41}
\]

(3.35) სახის შიგით პირობები შიგით პირობებით გზით გამოყვანილი ანგარიშ

(3.35) სახის შიგით პირობები შიგით პირობებით გზით გამოყვანილი ანგარ

(3.35) სახის შიგით პირობები შიგით პირობებით გზით გამოყვანილი ანგარ
§4. ჩართული განვითარების სისტემა $N = 1$ შიმოთხოვნისათვის წარმოდგენილი შედეგები

$N = 1$ შიმოთხოვნისათვის ჩართული განვითარების სისტემა მოკლესქვა წრიულად შეეხება (10). ტყა 66-70. შეხვდათ, განვითარების პირველად-კერძოთმდენებლის მნიშვნელობა პირველად და მეორე შენახვის შემდეგ აღ დგებოდა.

როდესაც $N = 1$, შემდეგ პირველი თვალი (2.26) განვითარებით სისტემა დაფუძნებული იყო

\[
\frac{1}{\sqrt{a}} \partial_\alpha (\sqrt{a} P^{(0)} \alpha) + \partial_\alpha \ln h P^{(0)} \alpha + F^{(0)} = 0,
\]
\[
\frac{1}{\sqrt{a}} \partial_\alpha (\sqrt{a} P^{(1)} \alpha) + 2\partial_\alpha \ln h P^{(0)} \alpha - \frac{3}{h} (P^{(0)} P)^{3} + F^{(1)} = 0,
\]

სადაც

\[
F^{(0)} = \frac{1}{2h} \int_{-h}^{h} x^3 \Phi dx^3 + \frac{1}{2h} [P_{(n+)}^{(n)} + P_{(n-)}^{(n)}],
\]

\[
F^{(1)} = \frac{3}{2h^3} \int_{-h}^{h} x^3 \Phi dx^3 + \frac{3}{2h} [P_{(n+)}^{(n)} - P_{(n-)}^{(n)}].
\]

გამოთვლილმა შედეგებმა $U = (u^1', u^2')$ მიმართებით შეიძლება გვაჩვეულა ჩანაწერი

\[
U = (0)^{(0)} + \frac{x^3}{h} P^{(1)}, \quad P^{i} = (0)^{(0)} + \frac{x^3}{h} P^{i}, \quad U = 0; \quad P^{i} = 0 \quad \text{როდესაც} \quad k > 1.
\]

პირველი თვალი (2.46) ფუძვლად იქნება შემდეგი ჩანაწერი

\[
U^{(0)} = U = (0)^{(0)}, \quad U = 0, \quad (0)^{(0)} U = 0, \quad (0)^{(0)} P^{i} = 0 \quad \text{როდესაც} \quad k > 1.
\]

(4.1) განვითარებით სისტემა კალკულაციონული უმოსიცხვრილი ჩანაწერი შესთავაზება (I თვალი (2.28))

\[
\nabla_\alpha P^{(0)} \alpha \sigma - \beta b^{(0)}_\alpha P^{(0)} \alpha \sigma + \partial_\alpha \ln h P^{(0)} \alpha \beta + F^{(0)} \beta = 0,
\]
\[
\nabla_\alpha P^{(0)} \alpha \sigma + b^{(0)}_\alpha P^{(0)} \alpha \sigma + \partial_\alpha \ln h P^{(0)} \alpha \sigma + F^{(0)} \beta = 0,
\]
\[
\nabla_\alpha P^{(1)} \alpha \sigma - \beta b^{(1)}_\alpha P^{(1)} \alpha \sigma + 2\partial_\alpha \ln h P^{(1)} \alpha \sigma - \frac{3}{h} P^{(0)} \beta P^{(0)} \beta + F^{(1)} \beta = 0,
\]
\[
\nabla_\alpha P^{(1)} \alpha \sigma + b^{(1)}_\alpha P^{(1)} \alpha \sigma + 2\partial_\alpha \ln h P^{(1)} \alpha \sigma - \frac{3}{h} P^{(0)} \beta P^{(0)} \beta + F^{(1)} \beta = 0.
\]

თუ შემდეგი სიტყვა მორგონი (4.2) მოკლესქვა, შემდეგ პირველი თვალი (2.47) და (2.48) ფუძვლად იქნება შემდეგი ჩანაწერი

\[
\epsilon^{(0)}_{\alpha \beta} = \frac{1}{2}(\nabla_\alpha U^{(0)} \beta + \nabla_\beta U^{(0)} \alpha - 2b^{(0)}_{\alpha \beta} U^{(0)}),
\]
\[
\epsilon^{(1)}_{\alpha \beta} = \frac{1}{2}(\nabla_\alpha U^{(1)} \beta + \nabla_\beta U^{(1)} \alpha - 2b^{(1)}_{\alpha \beta} U^{(1)} - \partial_\beta \ln h U^{(1)} \alpha - \partial_\alpha \ln h U^{(1)} \beta),
\]
\[
\epsilon^{(0)}_{\alpha \beta} = \frac{1}{2}(\nabla_\alpha U^{(0)} \beta + b^{(0)}_{\alpha \beta} U^{(0)} - \frac{1}{h} U^{(1)} \alpha), \quad \epsilon^{(1)}_{\alpha \beta} = \frac{1}{2}(\nabla_\alpha U^{(1)} \beta + b^{(1)}_{\alpha \beta} U^{(1)} - \partial_\beta \ln h U^{(1)} \alpha).
\]

77
\begin{align}
\varepsilon^{(0)}_{33} &= \frac{1}{h} U^{(1)}_{3}, \quad \varepsilon^{(1)}_{33} = 0, \quad (4.6) \\
\hbar^{(0)}_{\alpha\beta} &= \frac{1}{2} S(\nabla^{(0)}_\alpha U^{\beta} \nabla^{(0)}_\beta U^{\alpha}), \quad (4.7) \\
\hbar^{(1)}_{\alpha\beta} &= \frac{1}{2} S(\nabla^{(1)}_\alpha U^{\beta} \nabla^{(1)}_\beta U^{\alpha} - \partial_\alpha \ln h U^{(1)}_{\beta} + \partial_\beta \ln h U^{(1)}_{\alpha}), \quad (4.8) \\
\hbar^{(0)}_{\alpha3} &= \frac{1}{2} S(\nabla^{(0)}_\alpha U^{(0)}_{3} + b^{(0)}_{\alpha\beta} U^{(0)}_{\beta} - \frac{1}{2} h U^{(0)}_{\alpha}), \quad (4.9) \\
\hbar^{(1)}_{\alpha3} &= \frac{1}{2} S(\nabla^{(1)}_\alpha U^{(1)}_{3} + b^{(1)}_{\alpha\beta} U^{(1)}_{\beta} - \partial_\alpha \ln h U^{(1)}_{3}), \\
\varepsilon^{(0)}_{\gamma} &= \nabla^{(0)}_\gamma U^{(0)}_{3} - 2H U^{(0)}_{3} + \frac{1}{h} U^{(0)}_{3}, \\
\varepsilon^{(1)}_{\gamma} &= \nabla^{(1)}_\gamma U^{(1)}_{3} - 2H U^{(1)}_{3} - \partial_\gamma \ln h U^{(1)}_{3}.
\end{align}

პროპოზიტ თავი (2.44) დერივაბილური თანახმად ქიმიკის ტერმინების სინოდგინე ენიჭება დონემდე გარეგნოლი მოსაზღვრებელში.

\begin{align}
P^{(0)}_{\alpha\beta} &= \Lambda^{(0)}_{\gamma} a^{\alpha\beta} + 2M^{(0)}_{\alpha\beta} - 2\lambda_5 h^{(0)}_{\alpha\beta}, \quad (4.10) \\
P^{(1)}_{\alpha\beta} &= \Lambda^{(1)}_{\gamma} a^{\alpha\beta} + 2M^{(1)}_{\alpha\beta} - 2\lambda_5 h^{(1)}_{\alpha\beta}, \\
P^{(0)}_{\alpha3} &= 2M^{(0)}_{\alpha3} - 2\lambda_5 h^{(0)}_{\alpha3}, \quad (4.11) \\
P^{(1)}_{\alpha3} &= 2M^{(1)}_{\alpha3} - 2\lambda_5 h^{(1)}_{\alpha3}, \\
P^{(0)}_{33} &= \Lambda^{(0)}_{\gamma} + 2M^{(0)}_{33}, \quad (4.12) \\
P^{(1)}_{33} &= \Lambda^{(1)}_{\gamma}.
\end{align}

თუ მოცემული (4.4)-(4.9) განსახიერებლის (4.10)-(4.12) გამოხვრევის დერივაბილური, თოვალ ისევეთი არხანგელკინის უჯერამში (4.3) სისტემაში, თფილზე პოლიგონის ჯამური განვითარების გზით შელინების სიმძლობები:

\begin{align}
A \nabla^{(0)}_\alpha \nabla^{(0)}_\alpha U^{(0)}_{\beta} + B \nabla^{(0)}_\beta \nabla^{(0)}_\alpha U^{(0)}_{\alpha} + L^{(0)}_{\beta} (U^{(0)}_{j}, U^{(1)}_{j}) = 0, \\
A \nabla^{(0)}_\alpha U^{(0)}_{3} + L^{(0)}_{3} (U^{(0)}_{j}, U^{(1)}_{j}) = 0, \quad (4.13) \\
A \nabla^{(1)}_\alpha U^{(1)}_{\beta} + B \nabla^{(1)}_\beta \nabla^{(1)}_\alpha U^{(1)}_{\alpha} + L^{(1)}_{\beta} (U^{(1)}_{j}, U^{(1)}_{j}) = 0, \\
A \nabla^{(1)}_\alpha U^{(1)}_{3} + L^{(1)}_{3} (U^{(1)}_{j}, U^{(1)}_{j}) = 0.
\end{align}

(4.13) განხორციელდება სისტემა 12 განხრალისთვის და პროტორთი გამოხვრევის თავმჯდომარე 2 × 2 მატრისათვის დერივაბილური განულებარები, რომ გამოხვრევის ახალგაზრდა გამოხვრევით შედგენილი არხანგელკინის სისტემა.

თოვალი (4.10) და (4.12) დერივაბილური სიმძლობები:

\begin{align}
P^{(0)}_{\alpha\beta} &= (\Lambda^{(0)}_{\gamma} - B^{(0)} T a^{\alpha\beta} + 2M^{(0)}_{\alpha\beta} - 2\lambda_5 h^{(0)}_{\alpha\beta}, \\
P^{(1)}_{\alpha\beta} &= (\Lambda^{(1)}_{\gamma} - B^{(1)} T a^{\alpha\beta} + 2M^{(1)}_{\alpha\beta} - 2\lambda_5 h^{(1)}_{\alpha\beta}, \\
P^{(0)}_{33} &= -B^{(0)} T + \Lambda^{(0)}_{\gamma} + 2M^{(0)}_{33}, \quad (4.14) \\
P^{(1)}_{33} &= -B^{(1)} T + \Lambda^{(1)}_{\gamma},
\end{align}

78
$T^{(0)} = \frac{1}{2h} \int_{-h}^{h} T dx^3$, \quad T^{(1)} = \frac{3}{2h^2} \int_{-h}^{h} x^3 T dx^3.$

შემდეგ ის გავალაგოთი სიტყვებით ანგარიშით სილეტი (3.29), (3.32) და (3.35) გამორედება სიქმეში, რათა გამოწვევის მიზნით გამოყმარდეთ გამოთვალები.

$A \nabla_\alpha \nabla^\alpha U^{(0)} \beta + B \nabla^\beta \nabla_\alpha U^{(0)} \alpha + L \beta(U^\alpha, U^\beta) = B^\gamma \nabla_{\gamma} U^{(0)} T - B^\gamma \nabla_{\gamma} \ln h T^{(0)},$

$A \nabla_\alpha \nabla^\alpha U^{(0)} 3 + L 3(U^\alpha, U^3) = 2HB^\alpha T^{(0)},$

$A \nabla_\alpha \nabla^\alpha U^{(1)} \beta + B \nabla^\beta \nabla_\alpha U^{(1)} \alpha - L \beta(U^\alpha, U^\beta) = B^\gamma \nabla_{\gamma} U^{(1)} T - \nabla^\gamma \ln h T^{(1)},$

$A \nabla_\alpha \nabla^\alpha U^{(1)} 3 + L 3(U^\alpha, U^3) = B^\gamma (2H T^{(1)} - \frac{3}{h} T^{(0)}).$

თუ სიქმიათურის დღი ალგებრიდან გამოყმარათ რომ აქ შეიძლება შეიცავოს $h = \text{const.}$, მიღებული გამოთვალებები გამოყვანილი სიქმის გამოყმარებით.

§5. განხორციელებით სიქმეში ჰქონიო სიქმე განხრარებით.

ქრიფებით სიქმით მომლოცი გამორედება სიქმეში განხრარებით. გამოთვალების მიზნით გამორედები (4.3) სიქმეში ჰქონიო სიქმე

\[
\begin{align*}
\partial_\alpha P^{(0)}_{\alpha \beta} + F^{(0)}_{\beta} &= 0, \\
\partial_\alpha P^{(0)}_{\alpha 3} + F^{(0)}_{3} &= 0, \\
\partial_\alpha P^{(1)}_{\alpha \beta} - \frac{3}{h} P^{(0)}_{3 \beta} + F^{(0)}_{\beta} &= 0, \\
\partial_\alpha P^{(1)}_{\alpha 3} - \frac{3}{h} P^{(0)}_{3 \beta} + F^{(1)}_{3} &= 0.
\end{align*}
\]

(5.1)

(4.4)-(4.9) განხორციელები მე ტექსტის კონტექსტში გამოთვალება.

\[
\begin{align*}
\varepsilon^{(0)}_{\alpha \beta} &= \frac{1}{2} (\partial_\alpha U^{(0)} \beta + \partial_\beta U^{(0)} \alpha), \\
\varepsilon^{(1)}_{\alpha \beta} &= \frac{1}{2} (\partial_\alpha U^{(1)} \beta + \partial_\beta U^{(1)} \alpha),
\end{align*}
\]

\[
\begin{align*}
\varepsilon^{(0)}_{\alpha 3} &= \frac{1}{2} (\partial_\alpha U^{(0)} 3 + \frac{1}{h} U^{(0)} \alpha), \\
\varepsilon^{(1)}_{\alpha 3} &= \frac{1}{2} \partial_\alpha U^{(1)} 3, \\
\varepsilon^{(0)}_{33} &= \frac{1}{h} U^{(0)} 3, \\
\varepsilon^{(1)}_{33} &= 0.
\end{align*}
\]

(5.2)-(5.4)

79
\[
\begin{align*}
\mathcal{H}_{\alpha\beta} &= \frac{1}{2} S(\partial_\alpha U^0 - \partial_\beta U^0), \\
\mathcal{H}^{(1)}_{\alpha\beta} &= \frac{1}{2} S(\partial_\alpha U^{(1)} - \partial_\beta U^{(1)}), \\
\mathcal{H}^{(0)}_{\alpha3} &= -\mathcal{H}^{(0)}_{3\alpha} = \frac{1}{2} S(\partial_\alpha U^{(0)} - \frac{1}{h} U^{(1)}), \\
\mathcal{H}^{(1)}_{\alpha3} &= -\mathcal{H}^{(1)}_{3\alpha} = \frac{1}{2} S\partial_\alpha U^{(1)}, \\
\gamma^\gamma &= \partial_\gamma U^{(0)} + \frac{1}{h} U^{(1)}, \quad \gamma^\gamma = \partial_\gamma U^{(1)}.
\end{align*}
\]

The equations (5.2)-(5.7) follow from equations (4.10)-(4.12) under certain conditions.

\[
P^{(0)}_{\alpha\beta} = \Lambda^{(0)} \left(\frac{\theta}{\partial_\theta} + \frac{1}{h} U^{(1)} \right) \delta_{\alpha\beta} + A\partial_\alpha U^{(0)} - \Lambda \partial_\beta U^{(0)}, \\
P^{(0)}_{3\alpha} = (B - \Lambda) \partial_\alpha U^{(0)} + \frac{1}{h} A U^{(1)}, \\
P^{(0)}_{\alpha3} = A \partial_\alpha U^{(0)} + \frac{1}{h} (B - \Lambda) U^{(1)}, \\
P^{(0)}_{33} = \Lambda^{(0)} (A + B)^{(1)} U^{(0)}, \quad A + B = \Lambda + 2M, \\
P^{(1)}_{\alpha\beta} = \Lambda^{(1)} \delta_{\alpha\beta} + A\partial_\alpha U^{(1)} - \Lambda \partial_\beta U^{(1)}, \\
P^{(1)}_{\alpha3} = A\partial_\alpha U^{(1)}, \\
P^{(1)}_{3\alpha} = (B - \Lambda) \partial_\alpha U^{(1)}, \\
P^{(1)}_{33} = \Lambda^{(1)}.
\]

Thus
\[
\begin{align*}
\theta &= \partial_\gamma U^{(0)}, \quad \gamma = \partial_\gamma U^{(1)}.
\end{align*}
\]

The equations (5.8)-(5.15) follow from equations (5.1). Under certain conditions, equations \(N = 1 \) hold in these equations. Substituting these conditions and solving for the unknowns, we obtain the following equations:

\[
\begin{align*}
A\Delta^{(0)} U^{\beta} + B\partial_\beta^{(0)} - \frac{1}{h} \Lambda \partial_\beta U^{(1)} + F^{(0)} = 0, \\
A\Delta^{(1)} U^{3} - \frac{3}{h} \Lambda^{(0)} U^{(1)} - \frac{3}{h^2} (A + B)^{(1)} U^{(1)} + F^{(1)} = 0; \\
A\Delta^{(1)} U^{\beta} - \frac{3}{h^2} A U^{(1)} \partial_\beta^{(1)} - \frac{3}{h} (B - \Lambda) \partial_\beta U^{(0)} + F^{(1)} = 0, \\
A\Delta^{(0)} U^{3} + \frac{1}{h} (B - \Lambda)^{(1)} U^{(0)} + F^{(0)} = 0.
\end{align*}
\]
თუ საშუალო ქარდაქვეში (5.8), (5.11), (5.12) და (5.15) ფორმულები ჩამოყალიბდება (5.16), (5.17) და (5.18)

\[
\begin{align*}
P^{(0)}_{\alpha\beta} &= (-B^t T + \Lambda \theta + \frac{1}{h} \Lambda U_3) \delta_{\alpha\beta} + A \partial_{\alpha} U_{\beta} + (B - \Lambda) \partial_{\beta} U_{\alpha}, \\
P^{(0)}_{33} &= -B^t T + \Lambda \theta + \frac{1}{h} (A + B) U_3, \\
P^{(1)}_{\alpha\beta} &= (-B^t (1) T + \Lambda \theta) \delta_{\alpha\beta} + A \partial_{\alpha} U_{\beta} + (B - \Lambda) \partial_{\beta} U_{\alpha}, \\
P^{(1)}_{33} &= -B^t (1) T + \Lambda \theta,
\end{align*}
\]

ბოლო ქრონოლოგიას გამოიყენება ოპერატორები:

\[
\begin{align*}
A \Delta U_{\beta} + B \partial_{\beta} \theta + \frac{1}{h} \Lambda \partial_{\beta} U_{3} - B^t \partial_{\beta} T + F_{\beta} &= 0, \\
A \Delta U_{3} - 3 \Lambda \partial_{\theta} - \frac{3}{h^2} (A + B) U_{3} + 3 B^t T + F_{3} &= 0. \\
A \Delta U_{1} &- \frac{3}{h^2} A U_{1} + B \partial_{\theta} \theta - \frac{3}{h^2} (B - \Lambda) \partial_{\theta} U_{3} - B^t \partial_{\beta} T + F_{1} &= 0, \\
A \Delta U_{3} + \frac{1}{h} (B - \Lambda) \theta + F_{3} &= 0.
\end{align*}
\]

ამიტილი — \(N = 1\) ჰომოლოგიის ფორმალიზაციის სისტემა სრულად სახით დათვლილი სახით, რამა ქრონოლოგია საშუალო ქარდაქვეში (5.16) და (5.17) სისტემა შეიძლება შესაძლებელი იქნათ როგორც \(u_1, u_2, \ldots, u_3, u_4, \ldots, u_{12}, u_{13}, u_{14}, \ldots, u_{31}, u_{32}, \ldots, u_{39}\) ელემენტებით. ამიტომ გამოყვანილი სიქრონოლოგია ადამიანი ფინანსური სახით. ფინანსური ინიციატივაში როგორც \(h = (5.22)\) და (5.23) სისტემები.

ამჟამად ქრონოლოგიის ჰომოლოგია ფორმალიზაციის სისტემა ჩვენი შემოთავაზებულ პროექტში შეიძლება გამოიყენდეს \(M_{ij} = (Q_{ij}, Q_{ij})^T\), მქონე ქრონოლოგიის ჰომოლოგია შეფასებული ერთეულები: (5.17) და (5.18)

\[
\begin{align*}
M_\alpha &= \int_{-h}^{h} x_3 P_{\alpha\beta} dx_3, \\
M_{\alpha\beta} &= \int_{-h}^{h} x_3 P_{\alpha\beta} dx_3, \\
Q_{ij} &= (Q_{ij}, Q_{ij})^T. \\
U^*_\alpha &= \frac{3}{2h^2} \int_{-h}^{h} x_3 U_{\alpha} dx_3, \\
U^*_3 &= \frac{3}{4h^3} \int_{-h}^{h} (h^2 - x_3^2) U_3 dx_3, \\
\psi_{\alpha\beta} &= \frac{1}{2} \int_{-h}^{h} (h^2 - x_3^2) P_{\alpha\beta} dx_3, \\
\psi_{33} &= \frac{1}{2} \int_{-h}^{h} (h^2 - x_3^2) P_{33} dx_3, \\
\end{align*}
\]

სადაც \(M_\alpha, M_{\alpha\beta}\) — შესაძლებელი ლენჯანგ და სტატისტიკურ მონაცემები, \(Q_{ij} = (Q_{ij}, Q_{ij})^T\) — საშუალო ქარდაქვეში (5.17) და (5.24) სისტემები სახელმწიფებედ გამოყვანილი როგორც

\[
U^*_\alpha = -(M + \lambda S)^{-1} (M - \lambda S) \partial_{\alpha} U^*_3 + \frac{3}{2h^2} (M + \lambda S)^{-1} \psi_{33}, \\
\]
\[U^*_\alpha = -(M - \lambda S)^{-1}(M + \lambda S) \partial_\alpha U_3^* + \frac{3}{2h^3}(M - \lambda S)^{-1} \psi_{3\alpha}, \quad (5.25') \]

where the equation (113) describes the dynamics of a particle in the presence of a potential

\[P_{\alpha\alpha} = (\Lambda + 2M) e_{\alpha\alpha} + \Lambda (e_{3-\alpha} 3-\alpha + e_{33}) \quad (\alpha \text{ denotes the } \alpha \text{ component}) \]

\[e_{33} = (\Lambda + 2M)^{-1}(P_{33} - \Lambda e_{\gamma\gamma}) \]

and the effective potential is given by

\[P_{\alpha\alpha} = (\Lambda^* + 2M) \partial_\alpha U_\alpha + \Lambda^* \partial_{3-\alpha} U_{3-\alpha} + \Lambda (\Lambda + 2M)^{-1} P_{33}, \quad (5.26) \]

leading to

\[\Lambda^* := \Lambda - \Lambda (\Lambda + 2M)^{-1} \Lambda. \]

(5.26) describes the effective potential in the presence of an external field (potential of type (5.25) of the form)

\[M_\alpha = -\frac{2h^3}{3} [(\Lambda^* + 2M) \partial_\alpha^2 + \Lambda^* \partial_{3-\alpha}^2](M + \lambda S)^{-1}(M - \lambda S) U_3^* + \]
\[+ (\Lambda^* + 2M)(M + \lambda S)^{-1} \partial_\alpha \psi_{3\alpha} + \Lambda^*(M + \lambda S)^{-1} \partial_{3-\alpha} \psi_{3-\alpha} + \Lambda (\Lambda + 2M)^{-1} \int_{-h}^{h} x_3 P_{33} dx_3, \quad (5.27) \]

The function \(M_{\alpha\beta} \) is defined as

\[M_{\alpha\beta} = \int_{-h}^{h} x_3 [(M - \lambda S) \partial_\alpha U_\beta + (M + \lambda S) \partial_\beta U_\alpha] dx_3 = \]
\[= \frac{2h^3}{3} [(M - \lambda S) \partial_\alpha U_\beta^* + (M + \lambda S) \partial_\beta U_\alpha^*], \]

leading to (5.25) of the form

\[M_{\alpha\beta} = -\frac{4h^3}{3} M(M + \lambda S)^{-1}(M - \lambda S) \partial_\alpha^2 U_3^* + \]
\[+ (M - \lambda S)(M + \lambda S)^{-1} \partial_\alpha \psi_{3\beta} + I \partial_\beta \psi_{3\alpha}, \quad (5.28) \]

where the relations (112) describe the dynamics of a particle in the presence of a potential of type \(x_3 \)-dependent \(h \)-dependent \(-h\)-dependent \(h\)-dependent \((5.24) \) describes the motion of a particle in the presence of a potential of type \(x_3 \)-dependent

\[Q_{3\beta} = \partial_\alpha M_{\alpha\beta} + h(g^*_\beta + g_{3\beta}) + \int_{-h}^{h} x_3 \Phi_{3\beta} dx_3, \quad (5.29) \]

leading to

\[g^*_\beta := P_{3\beta}(x_1, x_2, h), \quad g_{3\beta} := P_{3\beta}(x_1, x_2, -h). \]
$$Q_{33} = -\frac{2h^3}{3}(\Lambda^* + 2M)(M + \lambda S)^{-1}(M - \lambda S)\Delta(\partial_\alpha U_3^\alpha) +$$
$$+ (M - \lambda S)(M + \lambda S)^{-1}\Delta \psi_3 + (I + \Lambda^*(M + \lambda S)^{-1})\partial^2_{\psi_3} +$$
$$\Lambda(\Lambda + 2M)^{-1}\int_{-h}^{h} x_3 \partial_\beta P_{33} dx_3 + h(g_3^+ + g_3^-) + \int_{-h}^{h} x_3 \Phi dx_3. \quad (5.30)$$

განწყვეტით წინაპროგრამის შეერთა განვითარება

$$\partial_\alpha Q_{33} + (g_3^+ - g_3^-) = -\int_{-h}^{h} \Phi dx_3, \quad (5.31)$$

საჯარო

$$g_3^+ := P_{33}(x_1, x_2, h), \quad g_3^- := P_{33}(x_1, x_2, -h).$$

(5.30) განთოვებული განვითარება

$$Q_{33} = -\frac{2h^3}{3}(\Lambda^* + 2M)(M + \lambda S)^{-1}(M + \lambda S)\Delta(\partial_\alpha U_3^\alpha) +$$
$$+ (M + \lambda S)(M - \lambda S)^{-1}\Delta \psi_3 + (I + \Lambda^*(M - \lambda S)^{-1})\partial^2_{\psi_3} +$$
$$\Lambda(\Lambda + 2M)^{-1}\int_{-h}^{h} x_3 \partial_\alpha P_{33} dx_3 + h(g_3^+ + g_3^-) + \int_{-h}^{h} x_3 \Phi dx_3. \quad (5.32)$$

(5.32) განთოვება შედევრით (5.31)-ში

$$-\frac{2h^3}{3}(\Lambda^* + 2M)(M - \lambda S)^{-1}(M + \lambda S)\Delta^2 U_3^\alpha + (\Lambda^* + 2M)(M - \lambda S)^{-1}\Delta(\partial_\alpha \psi_3) +$$
$$+ \Lambda(\Lambda + 2M)^{-1}\int_{-h}^{h} x_3 \Delta P_{33} dx_3 + h\partial_\alpha(g_3^+ + g_3^-) + (g_3^+ - g_3^-) + \int_{-h}^{h} x_3 \partial_\alpha \Phi dx_3 = -\int_{-h}^{h} \Phi dx_3.$$

ჯერკომპონენტები განთოვების შედევრით $\int_{-h}^{h} x_3 P_{33} dx_3, \psi_3$ და ψ_3 საჯაროს ბოლოს განთოვებიდან სულ გამომყოფი ნახსენად და ჯერკომპონენტ განთოვებიდან

$$\int_{-h}^{h} x_3 P_{33} dx_3 = (I - \Gamma) \int_{-h}^{h} x_3 P_{33} dx_3 + \Gamma \int_{-h}^{h} x_3 P_{33} dx_3 =$$
$$= \frac{h^2}{3}(I + 2\Gamma)[P_{33}(x_1, x_2, h) - P_{33}(x_1, x_2, -h)] + (I - \Gamma)\rho_{\text{Sim}}[x_3 P_{33}] +$$
$$+ \Gamma \rho_{\text{tr}}[x_3 P_{33}] = \frac{h^2}{3}(I + 2\Gamma)(P_{33}^+ - P_{33}^-) + R_1[x_3 P_{33}], \quad (5.33)$$

საჯარო

$$\Gamma = \begin{pmatrix} \gamma' & 0 \\ 0 & \gamma'' \end{pmatrix},$$

83
\(\gamma', \gamma'' \) - คุณสมบัติของระบบอุปกรณ์, \(\rho_{\text{sim}}, \rho_{tr} \) - คุณสมบัติของอุปกรณ์และระบบอุปกรณ์ ด้วยการใช้ \(\gamma(\rho', \rho'') \).

\[
\psi_{a3} = \frac{h^2}{3} (I + 2\Gamma)Q_{a3} + (I - \Gamma)\rho_{\text{sim}} \left[x_3 \int_0^{x_3} P_{a3} dx_3 \right] + \Gamma \rho_{tr}.
\] (5.34)

(5.34) ด้วยการใช้ (5.25)-\(\rho \), คุณสมบัติ \(U_{a} \) ของระบบอุปกรณ์ ดังนี้

\[
U_{a}^* = -(M + \lambda_5 S)^{-1} (M - \lambda_5 S) \partial_a U_3^* + \frac{1}{2h} (M + \lambda_5 S)^{-1} (I + 2\Gamma) Q_{a3}.
\] (5.35)

(5.33) และ (5.34) ด้วยการใช้ (5.27)-\(M \), \(M_\alpha \) คุณสมบัติของระบบอุปกรณ์ ดังนี้

\[
M_\alpha = \frac{h^2}{3} \left\{ -2h[(\Lambda^* + 2M) \partial_\alpha^2 + \Lambda^* \partial_{\alpha-\alpha}^2](M + \lambda S)^{-1} (M - \lambda S) U_3^* +
+ (\Lambda^* + 2M)(M + \lambda S)^{-1} (I + 2\Gamma) \partial_a Q_{a3} +
+ \Lambda^*(M + \lambda S)^{-1} (I + 2\Gamma) \partial_{a-\alpha} Q_{a-\alpha} +
+ \Lambda(M + 2M)^{-1} (I + 2\Gamma) (g_3^+ - g_3^-) \right\}.
\] (5.36)

(5.28) ด้วยการใช้ (5.34) คุณสมบัติ \(M_{\alpha\beta} \) ของระบบอุปกรณ์ ดังนี้

\[
M_{\alpha\beta} = \frac{h^2}{3} \left\{ -4hM(M + \lambda S)^{-1} (M - \lambda S) \partial_{\alpha \beta} U_3^* +
+ (M - \lambda S)(M + \lambda S)^{-1} (I + 2\Gamma) \partial_a Q_{a3} + (I + 2\Gamma) \partial_\beta Q_{a3} \right\}.
\] (5.37)

(5.31)-\(\rho \) คุณสมบัติของระบบอุปกรณ์ ดังนี้

\[
M_\alpha = \frac{h^2}{3} \left\{ -2h[(\Lambda^* + 2M) \partial_\alpha^2 + \Lambda^* \partial_{\alpha-\alpha}^2](M + \lambda S)^{-1} (M - \lambda S) U_3^* +
+ 2M(M + \lambda S)^{-1} (I + 2\Gamma) \partial_a Q_{a3} + [\Lambda(M + 2M)^{-1} - \Lambda^*(M + \lambda S)^{-1}] \times
\times (I + 2\Gamma)(g_3^+ - g_3^-) - \Lambda^*(M + \lambda S)^{-1} (I + 2\Gamma) \int_{-h}^{h} \Phi_3 dx_3 \right\}.
\]

(5.32) ด้วยการใช้ \(\psi_{a3} \) คุณสมบัติของระบบอุปกรณ์ \(\psi_{a3} \) คุณสมบัติ ดังนี้

\[
Q_{a3} = -\frac{2h^3}{3} (\Lambda^* + 2M)(M - \lambda S)^{-1} (M - \lambda S) \Delta(\partial_a U_3^*) + I \Delta \psi_{a3} +
+ (\Lambda^* + M - \lambda S)(M + \lambda S)^{-1} \partial_\alpha^2 \psi_{a3} +
+ \Lambda(M + 2M)^{-1} \int_{-h}^{h} x_3 \partial_\alpha P_{a3} dx_3 + h(g_3^+ + g_3^-) + \int_{-h}^{h} x_3 \Phi_\alpha dx_3.
\] (5.32')

84
თუ გავითვალისწინოთ, რომ

\[\partial_\alpha^2 \psi_\gamma = -\frac{1}{2} \int_{-h}^{h} (h^2 - x_3^2) \partial_\alpha \Phi_3 dx_3 - \partial_\alpha \left(\int_{-h}^{h} x_3 P_{33} dx_3 \right), \]

მეოთხე (5.32') ჯურების მიერ ხელოვნურად შეჩამებული განტოტილები

\[Q_{\alpha 3} - \frac{h^2}{3} (I + 2 \Gamma) \Delta Q_{\alpha 3} = -\frac{2h^3}{3} (\Lambda^* + 2M)(M + \lambda_5 S)^{-1}(M - \lambda_5 S) \Delta (\partial_\alpha U_3^*) + \]

\[+ \frac{h^2}{3} [\Lambda (\Lambda + 2M)^{-1} - (\Lambda^* + M - \lambda_5 S)(M + \lambda_5 S)^{-1}] (I + 2 \Gamma) \partial_\alpha (g_3^+ - g_3^-) + \frac{h}{2} (g_3^+ + g_3^-) - \]

\[- \frac{1}{2} (\Lambda^* + M - \lambda_5 S)(M + \lambda_5 S)^{-1} \int_{-h}^{h} (h^2 - x_3^2) \partial_\alpha \Phi_3 dx_3 + \int_{-h}^{h} x_3 \Phi_3 dx_3. \]

რეხებიათ შეთავაზებით გამაგრებული განტოტილები საჭირო. წინაპრივორობით შექმნილ განტოტილებს

\[\partial_1 M_1 + \partial_2 M_{21} - Q_{31} = F_1^*, \]

\[\partial_1 M_{12} + \partial_2 M_2 - Q_{32} = F_2^*, \]

\[\partial_1 Q_{13} + \partial_2 Q_{23} = F_3^*, \]

სადაც გამაგრებულ განტოტილები

\[F_1^* := - \left[h (g_3^+ + g_3^-) + \int_{-h}^{h} x_3 \Phi_3 dx_3 \right], \]

\[F_3^* := - \left[(g_3^+ - g_3^-) + \int_{-h}^{h} \Phi_3 dx_3 \right], \]

შეიძლება შედგებით სამაგრო

\[\partial_z [M_1 - M_2 + i(M_{12} + M_{21})] + \partial_z [M_1 + M_2 + i(M_{12} - M_{21})] + Q = F_1^*, \]

\[\partial_z Q_+ + \partial_z Q_+ = F_3^*, \]

(5.38)

სადაც

\[+ Q := Q_{31} + iQ_{32}, \quad Q_+ := Q_{13} + iQ_{23}; \quad F_1^* := F_1^* + iF_2^*. \]

(5.35) ჯურების მიერ განტოტილებს

\[Q_{\alpha 3} = 2h (I + 2 \Gamma)^{-1} [U_3^* - (M + \lambda_5 S) \partial_\alpha U_3^*]. \]

(5.39)

(5.39) ჯურების რაციონალური (5.36) და (5.37) განტოტილები, შევასაბმელობა გამაგრებული

\[M_\alpha = \frac{2h^3}{3} [\Lambda^* + 2M] \partial_\alpha U_3^* + \Lambda^* \partial_3 \Phi_3 U_3^*-\alpha + \frac{1}{2h} \Lambda (\Lambda + 2M)^{-1} (I + 2 \Gamma) (g_3^+ - g_3^-)], \]

\[M_\alpha = \frac{2h^3}{3} [\Lambda^* U_3^* + (M + \lambda_5 S) \partial_\alpha U_3^*]. \]

(5.40)

(5.39)-(5.41) ჯურების მიერ გამაგრებულ

\[M_1 - M_2 + i(M_{12} + M_{21}) = -\frac{8h^3}{3} M \partial_z U_3^*, \]

85
\[M_1 + M_2 + i(M_{12} - M_{21}) = \frac{4h^3}{3}(\Lambda^* + M + \lambda_S S)\theta^* - \frac{8h^3}{3} \lambda_S S \partial_2 U_3^* + \frac{2h^2}{3} \Lambda(\lambda + 2M)^{-1}(I + 2\Gamma)(g^+_3 - g^-_3), \]
\[Q_+ = 2h(I + 2\Gamma)^{-1}[(M + \lambda_S S)U_3^* + 2(M - \lambda_S S)\partial_2 U_3^*], \]
\[+ Q = 2h(I + 2\Gamma)^{-1}[(M - \lambda_S S)U_3^* + 2(M + \lambda_S S)\partial_2 U_3^*], \]

სადაც
\[\theta^* = \partial_2 U_3^* + \partial_2 U_3^*. \]

თუ ხდება (5.42) ფორმული (5.38) წინაპირობის განსხვავებით, ოპერატორი
\[A\Delta U_3^* + 2B^*\partial_2^* - \frac{3}{h^2}(I + 2\Gamma)^{-1}[2(B^* - \Lambda^*)\partial_2 U_3^* + AU_3^*] = \tilde{F}_+, \]
\[A\Delta U_3^* + (B^* - \Lambda^*)\theta^* = \frac{1}{2h}(I + 2\Gamma)\tilde{F}_3^*, \]
(5.43) დაკავშირებით წინაპირობა დაფინირებს \(U_3^* \)-ის ფუნქციად
\[(\Lambda^* + 2M)(M + \lambda_S S)^{-1}(M - \lambda_S S)\Delta^2 U_3^* - \frac{3}{h^2}[A(B - \Lambda)A - B + \Lambda]\Delta U_3^* = \]
\[\partial_2^* \tilde{F}_3^* - \frac{1}{2h}(A + B)(B - \Lambda)^{-1}(I + 2\Gamma)\Delta F_3^* + \frac{3}{2h^2}(I + 2\Gamma)^{-1}A(I + 2\Gamma)F_3^*. \]

\[\gamma \text{ გამჭირდება სხვადასხვა სიმრავლით შედეგები (5.43) ხსენებმა წინაპირობის თხრობას განსხვავდება სისტემაში. თუმცა } \gamma = 0 \text{ ის ხშირად იკეთება შედეგები (5.23) ხსენებში, სადაც } B \text{ და } \Lambda \text{ მაგალითით შემდგომით ხსენებში } B^* \text{ და } \Lambda^* \text{ გამჭირდება.} \]

86. განათლება-ნაკრძალის განხორციელება სისტემის წინაპირობა

(მორქული წინა პროგრამები გამოქვა, ი. წ. თუ არ გვხვდება } N = 1 \text{ მორქულით გამოქვა განხორციელ-}
ბათა სისტემა მიერ მართლი სისტემა წინაპირობით ბრუნებულ ხსენებში ხსენებებს ფორმულები გამომაგდება თხრობის სისტემა შორი მოძრავი რეჟიმები ტოლი განსხვავება. თუ } \gamma = 0 \text{ გვხვდება } \tilde{F}_3 \text{ თხრობით გამოქვა თხრობით } (3.30) \text{ და (3.31), ან (3.33) და (3.34) განხორციელდება პირობები, თუ } \gamma = 0 \text{ გვხვდება } \tilde{F}_3 \text{ თხრობით გამოქვა თხრობით } (3.36) \text{ და (3.37) განხორციელდება პირობები, თუ } \gamma = 0 \text{ გვხვდება } \tilde{F}_3 \text{ თხრობით გამოქვა თხრობით } (3.38) \text{ და (3.39) განხორციელდება პირობები.} \]
$\Delta \frac{o}{o} T - K \frac{o}{o} T = D,$ \hspace{1cm} (6.1)

საქმა აღწერს $K = 2 \times 2$ მატრიცას, ხოლო $D = 2 \times 1$ მატრიცა. ასევე ჰქონდა:
1) ფორმულა (6.1) ჰქონდა ამოცანა კრუზოტო განკუთვნილებაში მიღებულია ბარომეტრის სახით განრიგობა.

\[K = \frac{3}{h^2} I + \alpha (A^t)^{-1} S, \quad D = -\frac{3}{2h^2} (T^+ + T^-); \]

2) ფორმულა (6.1) ჭიშტო განკუთვნილებაში მიღებულია

\[K = \alpha (A^t)^{-1} S, \quad D = \frac{1}{2h} (Q^+ + Q^-); \]

3) ფორმულა (6.1) ჭიშტო განკუთვნილებაში მიღებულია

\[K = (A_0)^{-1} (e + \alpha^* S), \quad D = -(A_0)^{-1} \epsilon T_e. \]

საქმა აღწერს რომ დათვლა გალაქტურილობის მატრიცა. მატრიცებში, რომ ამ შემთხვევაშია ამოცანა კრუზოტო განკუთვნილება. 2) ფორმულა (6.1) ჰქონდა სიხებით განკუთვნილებაში რიგებით განრიგობა.

ჩამოთვლით $F_1 = F_2 = F_3 = 0$ და აღწერთა (5.22) თეორემა ესტომეტრიის სახით [55],[57]

\[
A \Delta \frac{o}{o} T + 2B \partial_z \frac{o}{o} U_2 + \frac{2}{h} \lambda \partial_z \frac{o}{o} U_1 - 2B^t \partial_z \frac{o}{o} T = 0,
\]

\[
A \Delta \frac{o}{o} T - \frac{3}{h} \lambda \frac{o}{o} U + \frac{3}{h^2} (A + B) \frac{o}{o} U - \frac{3}{h} B^t \frac{o}{o} T = 0,
\] \hspace{1cm} (6.3)

საქმა აღწერს რომ ამოცანა კრუზოტო განკუთვნილებაში შედგება.

\[
\partial_z (2A \partial_z \frac{o}{o} U - 3B \frac{o}{o} U_3 - B^t \frac{o}{o} T) = 0,
\]

ჩამოთვლით ფორმულა

\[
2A \partial_z \frac{o}{o} U + B \frac{o}{o} U_3 + \frac{1}{h} \lambda \frac{o}{o} U_3 - B^t T = G \varphi' (z), \]

საქმა აღწერს რომ $\varphi(z) = (\varphi_1(z), \varphi_2(z))^T$ ამოცანა კრუზოტო განკუთვნილებაში შედგება. G - განკუთვნილება შედგენილია ფუნქცია სხვა მატრიცის მხრივ, რომლითაც მზელი დარგმება.

(6.4) მიღებული ფორმულები იპოვებათ მგზავრობით შედგენილი და განკუთვნილების. რთულ

\[
\theta = \partial_z \frac{o}{o} U + \partial_z \frac{o}{o} U_+.
\]
(6.3) სასწორო მტკივნებმა გახერხდება ლოთელზე, ორმა: \[\Lambda (0)^{0} = \frac{h}{3} A \Delta U^{1} 3 - \frac{1}{h}(A + B) U^{1} 3 + B^{0} T. \] (6.6)

(6.5) განთვალმომძღვრეთ ფორმულა 6.3-ის (detA ≠ 0), მონაცემთა შემდგომ განხორციელება 1-ის შამთა

\[\Delta U^{1} 3 = \frac{3}{h^2} A^{-1}[A + B - \Lambda (A + B)^{-1}] U^{1} 3 = \frac{3}{h^2} A^{-1}(I - A^{-1}(1 - \Lambda (A + B)^{-1})B^{0} T. \] (6.8)

(6.7)

\[\Lambda (0)^{0} + \frac{1}{h} \Lambda (A + B)^{-1} U^{1} 3 \Lambda (A + B)^{-1} B^{0} T = \frac{1}{2} \Lambda (A + B)^{-1} G(\varphi(z) + \varphi'(z)). \] (6.6)

(6.10) ფორმულა 6.7-ის (det A ≠ 0), მოთხოვნეთ შედეგ განხორციელება 1-ის შამთა

\[\tilde{A} := A^{-1}[A + B - \Lambda (A + B)^{-1}] \] (6.9)

(6.10) ფორმულა 6.8-ის შედეგ განხორციელება 1-ის შამთა

\[U^{1} 3 = \frac{-h}{2} \tilde{A}^{-1} A^{-1}(I - A^{-1}(1 - \Lambda (A + B)^{-1})B^{0} T. \] (6.10)

\[\chi(z, \bar{z}) = (x_1(z, \bar{z}), x_2(z, \bar{z}))^T, \] (6.11)

\[\Delta x_1 - \frac{3}{h^2} \alpha_1 x_1 = 0, \quad \Delta x_2 - \frac{3}{h^2} \alpha_2 x_2 = 0, \] (6.11)

(6.10) ფორმულა 6.10-ის შედეგ განხორციელება 1-ის შამთა

\[A_0 K - \frac{3}{h^2} \tilde{A} A_0 = -\frac{3}{h} A^{-1}(I - A^{-1}(1 - \Lambda (A + B)^{-1})B^{0} T. \] (6.10)

88
\[(6.10)\] The basis vectors depend on \((6.5)\) and \((6.10)\) as \((6.9)\) and \((6.10)\) depend on \((6.4)\), respectively.

\[\begin{align*}
\theta & = (A + B)^{-1} \left\{ \frac{1}{2} \left[I + \Lambda \tilde{A}^{-1} A^{-1} \Lambda (A + B)^{-1} \right] G(\varphi(z) + \overline{\varphi(z)}) - \\
& - \frac{1}{\hbar} \Lambda \mathcal{L} \chi(z, \tilde{z}) + (B + \frac{1}{\hbar} \Lambda A_0) \theta + \frac{1}{\hbar} \Lambda B_0 \right\}.
\end{align*}\] \(\text{(6.12)}\)

\[(6.10)\) and \((6.12)\) depend on \((6.4)\) and \((6.10)\) depend on \((6.4)\), respectively.

\[\begin{align*}
2 \partial_z U & = [I - \frac{1}{2} B(A + B)^{-1} + \frac{1}{2} A(A + B)^{-1} \Lambda \tilde{A}^{-1} A^{-1} \Lambda (A + B)^{-1}] \varphi(z) - \\
& - \frac{1}{2} [B + (B(A + B)^{-1} - I) \Lambda \tilde{A}^{-1} A^{-1} \Lambda] (A + B)^{-1} \varphi'(z) - \\
& - (I - B(A + B)^{-1}) \left(\frac{1}{\hbar} \Lambda A_0 - B \right) T - \frac{1}{\hbar} (I - B(A + B)^{-1}) \Lambda B_0 - \\
& - \frac{1}{\hbar} [I - B(A + B)^{-1}] \Lambda \mathcal{L} \chi(z, \tilde{z}).
\end{align*}\] \(\text{(6.13)}\)

The procedure \(B - A(A + B)^{-1} \Lambda \tilde{A}^{-1} A^{-1} \Lambda \text{ depends on a particular function of interest. Indeed, (6.13) can be written as}\)

\[\begin{align*}
2 \theta & = A \varphi(z) - z \overline{\varphi(z)} - \psi(z) - \frac{4h}{3} \left(A + B \right)^{-1} \Lambda \tilde{A}^{-1} \Lambda \mathcal{L} \chi(z, \tilde{z}) - \\
& - \left(A + B \right)^{-1} \left(\frac{1}{\hbar} \Lambda A_0 - B \right) T + \frac{1}{\hbar} \Lambda B_0 z.
\end{align*}\] \(\text{(6.14)}\)

Note that \(\psi(z) = (\psi_1(z), \psi_2(z))^T\) such that the coefficients of interest are defined as follows.

\[G = 2(A + B)[B - A(A + B)^{-1} \Lambda \tilde{A}^{-1} A^{-1} \Lambda]^{-1} A, \quad A^* = A^{-1} G - I.\] \(\text{(6.15)}\)

Hence, the procedure \((6.3)\) depends on whether the corresponding functions are dependent on a particular function of interest or on different functions in turn depending on a particular function of interest. Indeed, the procedure \((6.3)\) can be written as follows.

\[\begin{align*}
\theta & = \frac{1}{2} \left(P_{12} + P_{21} \right) + i \left(P_{12} - P_{21} \right) = -4M \partial_z U +, \\
\theta & = \frac{1}{2} \left(P_{12} + P_{21} \right) + i \left(P_{12} - P_{21} \right) = 2 \left(A \partial_z U \right) +, \\
\theta & = 2 \Lambda \mathcal{L} \chi(z, \tilde{z}).
\end{align*}\] \(\text{(6.16)}\)

\[\begin{align*}
P^0 & = 2 \Lambda \mathcal{L} \chi(z, \tilde{z}) - \frac{1}{\hbar} \Lambda \mathcal{L} \chi(z, \tilde{z}) - \frac{4h}{3} \left(A + B \right)^{-1} \Lambda \tilde{A}^{-1} \Lambda \mathcal{L} \chi(z, \tilde{z}).
\end{align*}\] \(\text{(6.17)}\)

Hence, the procedure \((6.14)\) and \((6.10)\) can be written as follows.

\[\begin{align*}
2 \theta & = A \varphi(z) - z \overline{\varphi(z)} - \psi(z) - \frac{4h}{3} \left(A + B \right)^{-1} \Lambda \tilde{A}^{-1} \Lambda \mathcal{L} \chi(z, \tilde{z}).
\end{align*}\] \(\text{(6.18)}\)

\[\begin{align*}
P^1 & = 2 \Lambda \mathcal{L} \chi(z, \tilde{z}).
\end{align*}\] \(\text{(6.19)}\)

Hence, the procedure \((6.14)\) and \((6.10)\) can be written as follows.
\[-(A + B)^{-1} \left(\left(\frac{1}{h} \Lambda A_0 - B^t \right) \int T \, dz + \frac{1}{h} \Lambda B_0 z \right), \quad (6.14') \]

\[
U_3^{(1)} = -\frac{h}{2} \tilde{A}^{-1} A^{-1} \Lambda (A + B)^{-1} D(\varphi(z) + \overline{\varphi(z)}) + \mathcal{L} \chi(z, \bar{z}) + A_0 \int_T + B_0. \quad (6.10')
\]

მაგალითი ხარჯის ალგებრულმა ფორმულებთან (6.15)-(6.19) ერთმანეთთან

\[
P_{22}^{(0)} - P_{11}^{(0)} + i(P_{12}^{(0)} + P_{21}^{(0)}) = 2M \left\{ \bar{z} \varphi''(z) + \psi'(z) + \frac{4h}{3}(A + B)^{-1} \Lambda \tilde{A}^{-1} \mathcal{L} \partial_{zz} \chi(z, \bar{z}) + \right. \right.
\]
\[
+ (A + B)^{-1} \left(\frac{1}{h} \Lambda A_0 - B^t \right) \int \partial_{zz} T \, d\bar{z} \right\}. \quad (6.20)
\]

(6.4) ფუნქციების გადაფრთხილებით (6.17) თანამედროვე ზუსტობილი ხარჯის ლოგიკით

\[
P_{11}^{(0)} + P_{22}^{(0)} + i(P_{12}^{(0)} - P_{21}^{(0)}) = 2[G \varphi'(z) - 2M \partial_z U^{(0)} +]. \quad (6.17')
\]

(6.14') გადაწყვეტილებით z-ის და ორგანულად (6.17')-ში, მიმდებით

\[
P_{11}^{(0)} + P_{22}^{(0)} + i(P_{12}^{(0)} - P_{21}^{(0)}) = 2 \left\{ (A - \lambda S A^*) \varphi'(z) + M \overline{\varphi'(z)} + \frac{1}{h} M (A + B)^{-1} \Lambda \mathcal{L} \chi(z, \bar{z}) + \frac{1}{h} M (A + B)^{-1} \left(\Lambda A_0 - hB^t \right) \int_T + A_0 \right\}, \quad (6.21)
\]

\[
P_{+}^{(1)} = P_{13}^{(1)} + i P_{23}^{(1)} = A \left\{ -h \Lambda \overline{\varphi''(z)} + 2 \mathcal{L} \partial_z \chi(z, \bar{z}) + 2A_0 \partial_z T^{(0)} \right\}, \quad (6.22)
\]

\[
P_{-}^{(1)} = P_{31}^{(1)} + i P_{32}^{(1)} = (B - \Lambda) \left\{ -h \Lambda \overline{\varphi''(z)} + 2 \mathcal{L} \partial_z \chi(z, \bar{z}) + 2A_0 \partial_z T^{(0)} \right\}, \quad (6.23)
\]

სადაც ორგანული ლოგიკით

\[\Lambda := \tilde{A}^{-1} A^{-1} \Lambda (A + B)^{-1} A + A^*. \quad (6.24)\]

ამისთვის, \(N = 1 \) მომართულობით გადაფრთხილება გამოიხატება სიმულირების თბილი პირობაში ხარჯის ნქრობისათვის ელემენტი, ვინაიდან სიმულირების ალფაბეტი (6.24) საშუალებით მოხდა საშუალებით ვარიანტებს დამოუკიდებლად საშუალებით პირობამ.

§7. ლოგიკით გადაფრთხილებით სიმულირები თბილი პირობა

მაგალითი (5.23) განვახორციგ რეალურის თბილი პირობა შეხედული შემდეგ პირობებში

\[\Delta T^{(1)} - K^{(1)} T = D,\]

90
სახურა ხანა და ჰურა იმოქმედება შერმა მაქრებით.
3) დგება ადგილზე თვალისხრილი მცირეშე ერთი სიმულაციური პორტების შემთხვევაში (ქმ. I, §3)
\[K = \frac{15}{\hbar^2} I + \alpha(A^t)^{-1} S, \quad D = -\frac{15}{2\hbar^2} (T^+ - T^-); \]
4) დგება ადგილზე გულიყროვანი ვრცელი მონაწილეობა შემთხვევაში
\[K = \frac{5}{2\hbar^2} I + \alpha(A^t)^{-1} S, \quad D = -\frac{5}{4\hbar} (Q^+ - Q^-); \]
5) დგება მონასაჭირო მნიშვნელობით გასული მონაწილეობა შემთხვევაში, როგორც განსაზღვრა სიმუ- ლაციური პროცესის თანდათანობით
\[K = 3(A_0^t)^{-1}(\varepsilon_0 + \alpha^* S), \quad D = -3(A_0^t)^{-1}\varepsilon T^+_0. \]
დამოუკიდებელი \(F_1 = F_2 = F_3 = 0 \) და მონაცემები (5.23) სახურა სამკუთხედით სმარტ [55]
\[
\begin{align*}
A\Delta (U)_{1}^{(1)} &+ \frac{3A}{h^2} (U)_{1}^{(1)} + 2B\partial_z (U)_{2}^{(1)} - \frac{6}{h} (B - \Lambda) \partial_z (U)_{3}^{(0)} - 2B^t \partial_z T^{(1)} = 0, \\
A\Delta (U)_{3}^{(0)} + \frac{1}{h} (B - \Lambda) (U)_{3}^{(1)} &= 0.
\end{align*}
\tag{7.1}
\]
სადაც \(U = U_{1}^{(1)} + i U_{2}^{(1)}, \quad \partial_z = \partial_z U_{1}^{(1)} + \partial_z U_{2}^{(1)} \).
\(\det A \neq 0 \) და (7.1) სიმულაცია დამატებით ურთიერთობებიდან დამოკიდებულია
\[
\Delta (U)_{3}^{(0)} + \frac{1}{h} A^{-1}(B - \Lambda) (U)_{3}^{(1)} = 0.
\tag{7.2}
\]
\(\det(B - \Lambda) = \det(M + \lambda_0 S) \neq 0 \) და (7.2) ჯგუფად დამატებით იმისათვის, რომ \(\lambda_0 S \neq 0 \) იმისათვის, რომ (7.2) არ გავრცლობდა.
\[
(U)_{+}^{(1)} = -2h(B - \Lambda)^{-1} A\partial_z (U)_{3}^{(0)} + i\partial_z \omega,
\tag{7.3}
\]
სადაც \(\omega = (\omega_1, \omega_2)^T \) - დერიფისიდით ზედა პოლარი ძირითად ჭივი, რომლისთვისაც (7.3)-ის მონაცემები ტოლია. თუ (7.3)-ის მონაცემები ტოლია, პარამეტრზე ზღვრულთან თანახმად ხდება მათგან, რომლებშიც (7.2) გავრცლობდა.
(7.3) ხასიათი (7.1) სიმულაცია პარამეტრმა განითვალობს, რომ გამოთქვამი ზოგ ნაწილი შემდეგ
\[
(U)_{3}^{(1)} = -h(B - \Lambda)^{-1} A\Delta (U)_{3}^{(1)}
\tag{7.4}
\]
ჯგუფად ხდება. თანახმად (7.2) ჯგუფად მონაცემები, დაჯგუფით
\[
\partial_z \left\{ -2h(A + B)(B - \Lambda)^{-1} A\Delta (U)_{3}^{(0)} + \frac{6}{h} [A(B - \Lambda)^{-1} A - B + \Lambda] (U)_{3}^{(0)} + Ai(\Delta \omega - \frac{3}{h^2 \omega}) - 2B^t T^{(1)} \right\} = 0,
\]
\[
-2h(A+B)(B-\Lambda)^{-1}A\Delta U^{(0)}_{3} + \frac{6}{h}[A(B-\Lambda)^{-1}A-B+\Lambda]^{(0)}_{3} + \\
Ai(\Delta\omega - \frac{3}{h^2}\omega) - 2B^{(1)}_{T} = Gf(z),
\]

სადაც \(f(z) = (f_1(z), f_2(z))^T - f_1(z) \) და \(f_2(z) \) დასჭირებული იქნას. \(A \), \(B \), \(\Lambda \) და \(\Delta \) წინაპირობით სტატისტიკურმ - ბრუნვით, \(G = 2 \times 2 \) სიგმაფორმირებული ფუნქციის წინაპირობით მთლიანობა, რომელიც წინაპირო დაჯგუფებული მიზნით.

(7.5) სიდიდეთის მიხედვით ქვეით შეიძლება იქნეს განვითარებული, თუმცა შესაბამისი განვითარების შემადგენლობა არ შეიძლება იქნას. თუმცა (7.6) და (7.7) უმეტეს წყალობით შემოკლებული მიზნით.

(7.6) არსებობს ბაზისმატრული განმარტება. \(\tilde{A} := A^{-1}(B-\Lambda)(A+B)^{-1}[A(B-\Lambda)^{-1} - (B-\Lambda)A^{-1}]A. \)

(7.8) სიდიდეთის შებჯებული ნაწილი, რომლის მიხედვით პირველი და მეორე ნაწილები სტატისტიკურმ - ბრუნვით, აქვს (7.6) თუმცა, ჩამოთვლილი საინიჭო წყალობით, ვერდი

\[
(0)_{3} = \frac{h}{12}[A(B-\Lambda)^{-1} - (B-\Lambda)A^{-1}]AG(f(z) + \overline{f(z)}) + L\chi(z, \bar{z}) + A^{0}(1)_{T} + B^{0},
\]

სადაც \(\chi(z, \bar{z}) = (\chi_1(z, \bar{z}), \chi_2(z, \bar{z}))^T, \chi_1 \) და \(\chi_2 \) (6.11) სტატისტიკურმ - ბრუნვით მთლიანმა, სადაც \(\chi_1 \) და \(\chi_2 \) განვითარებული \(\tilde{A} \) განმარტება. სტატისტიკურმ - ბრუნვით, \(A^{0} \) წინაპირობებზე შედგება განვითარების პირობებზე

\[
A^{0}K = \frac{3}{h^2}\tilde{A}A^{0} = -\frac{1}{h}A^{-1}(B-\Lambda)(A+B)^{-1}B^{t},
\]

ხოლო \(B^{0} \) დასჭირებული ართუმო განმარტება

\[
B^{0} = \frac{h^2}{3}\tilde{A}^{-1}A^{0}D.
\]
(7.7) გამოიყენებული ფორმულა

\[\omega = \frac{i h^2}{6} A^{-1} G(f(z) - f(\bar{z})) + \tau(z, \bar{z}), \] \hspace{1cm} (7.10)

სადაც \(\tau = (\tau_1, \tau_2)^T \) პოტენციური ჰამილტონიანი

\[\Delta \tau - \frac{3}{h^2} \tau = 0 \]

ხოლო არაქსიული.

(7.4) ფონდარები (7.9)-ს ნახვთ დონეჯის დონეჯის განვითარება იპსილონთურ პირველ დონეჯის განვითარება და (7.11)-ში

\[\theta^{(1)} = -h(B - \Lambda)^{-1} A \left\{ \frac{3}{h^2} \tilde{A}L \chi(z, \bar{z}) + A^0 K \frac{T}{T} + A^0 D \right\}. \] \hspace{1cm} (7.11)

(7.9) და (7.10) ფონდარები ჩაწერილი (7.3)-ში, ჰოროები

\[U^{(1)}_+ = i \partial_z \tau(z, \bar{z}) + \frac{h^2}{6} [A^{-1} - (B - \Lambda)^{-1} A(A(B - \Lambda)^{-1} - (B - \Lambda)A^{-1}) A] \tilde{G} \tilde{f}(z) - 2h(B - \Lambda)^{-1} A L \partial_z \chi(z, \bar{z}) - 2h(B - \Lambda)^{-1} A A^0 \partial_z T. \] \hspace{1cm} (7.12)

ამოცანა, (7.1) გამოიყენებული სიხსების როლი არ ხდებოდა თუმცა მენეჯმენტი ობიექტების კონსტრუქტიული შემთხვევა და იმით ჰორომეტრიას განვითარების არაქსიული სიხსებით.

ხოლო მარცხი ბაზისური თანახმა ინოტი გარემოთ თარიღებით გამოიყენებია განათლებით ნაშრომიანი ფონდარები

\[P^{(1)}_{22} - P^{(1)}_{11} + i(P^{(1)}_{12} + P^{(1)}_{21}) = -4M \bar{\partial}_z U_+^{(1)}, \]

\[P^{(1)}_{11} + P^{(1)}_{22} + i(P^{(1)}_{12} - P^{(1)}_{21}) = 2[-B^T T^{(1)} + B \theta^{(1)} - 2\lambda_5 S \partial_z U_+^{(1)}], \]

\[P^{(0)}_+ = P^{(0)}_{13} + iP^{(0)}_{23} = 2A \partial^*_z U_3 + \frac{1}{h}(B - \Lambda) U_+^{(1)} = \frac{1}{h}(B - \Lambda)i \partial_z \omega, \]

\[P^{(0)} = P^{(0)}_{31} + iP^{(0)}_{32} = 2(B - \Lambda) \partial^*_z U_3 + \frac{1}{h} A U_+^{(1)}. \]

თუ ჩაწერილი არ არაქსიული ფონდარები 7.9, 7.11 და 7.12 ფონდარები, ჰოროები

\[P^{(1)}_{22} - P^{(1)}_{11} + i(P^{(1)}_{12} + P^{(1)}_{21}) = -4M \left\{ -i \partial^2_{zz} \tau(z, \bar{z}) + \frac{h^2}{6} [A^{-1} - (B - \Lambda)^{-1} A(A(B - \Lambda)^{-1} - (B - \Lambda)A^{-1}) A] \tilde{G} \tilde{f}''(z) - 2h(B - \Lambda)^{-1} A L \partial^2_{zz} \chi(z, \bar{z}) - 2h(B - \Lambda)^{-1} A A^0 \partial^2_{zz} T \right\}, \]

\[P^{(1)}_{11} + P^{(1)}_{22} + i(P^{(1)}_{12} - P^{(1)}_{21}) = 2 \left\{ \frac{3i}{2h^2} \lambda_5 S \tau(z, \bar{z}) - \frac{3}{h}(B - \lambda_5 S)(B - \Lambda)^{-1} A \tilde{A} L \chi(z, \bar{z}) - \right\} \]

93
\[-(B' + h(B - \lambda S)(B - \Lambda)^{-1}AA^0K)\{(I - h(B - \lambda S)(B - \Lambda)^{-1}AA^0D)\},
\]
\[P_+^{(0)} = \frac{1}{h}(B - \Lambda)i\partial \tau(z, \bar{z}) + \frac{h}{6}(B - \Lambda)A^{-1}Gf'(z),
\]
\[+ P = \frac{1}{h}A i\partial \tau(z, \bar{z}) + \frac{h}{6}Gf'(z).
\]

Sinheladze, Ph. (5.13) სახელმწიფო თეორემა უხვის ძალის სიმრავლი,

\[U^* + i\partial \tau(z, \bar{z}) + h^2[I - \hat{A}^{-1}(\hat{A}^{-1} - \hat{A})^{-1}A' + 2\Gamma A]A'\hat{\phi}'(z) - 2\hat{A}^{-1}\chi(z, \bar{z}), \quad (7.13)
\]

\[U^*_3 = \frac{h^2}{2} (\hat{A}^{-1} - \hat{A})^{-1}A^{-1}(I + 2\Gamma)A(\phi(z) + \phi'(z)) + \chi(z, \bar{z}), \quad (7.14)
\]

\[\Delta \chi = \frac{3}{h^2}a_0 \chi = 0, \quad \Delta \tau = \frac{3}{h^2} (1 + 2\gamma') \tau = 0, \quad \Delta \tau = \frac{3}{h^2} (1 + 2\gamma'') \tau = 0,
\]

(α წყაროთხილი იქ წარტყიანა) \[\hat{A} := A^{-1}(B^* - \Lambda^*) = (M - \lambda S)^{-1}(M - \lambda S), \] აქ და აქ
\[\hat{A}(A + B^*)^{-1}(I + 2\Gamma)^{-1}A(\hat{A}^{-1} - \hat{A})\] სიმრავლეთით თანამობით პრინციპი, \[\mathcal{L} \] ადგილური სტრექინგი ის სარგებლობა რეალური შესაბამით საუკუნეთით მეთოდები.

.. რისიც რეალური შესაბამით სტრექინგი როგორც

\[M_1 - M_2 + i(M_{12} + M_{21}) = \frac{8h^3}{3}M i\partial \tau U^*, \]

\[M_1 + M_2 + i(M_{12} - M_{21}) = \frac{2h^2}{3} \{2h(\Lambda^* + M + \lambda S)\theta^* -
- 4h\lambda S \partial \tau U^* + \Lambda(\Lambda + 2M)^{-1}(I + 2\Gamma)(\partial^* - \partial^*_2)\},
\]

\[Q_+ = 2h(I + 2\Gamma)^{-1} \{(M + \lambda S)(U^*_0 + 2(M - \lambda S)\partial \tau U^*_0)\},
\]

\[+Q_+ = 2h(I + 2\Gamma)^{-1} \{(M - \lambda S)U^*_0 + 2(M + \lambda S)\partial \tau U^*_0\}.
\]

(7.13), (7.14) წყაროთხილი სხვადასხვა (7.15)-ით, შესაბამისი გამოთქვენილი ქმენა- ნაკვრცვის მიგრაციული მოთხოვნა იპოსტილურ შესახებ, ჟამით გამოთქვენილად

\[M_1 - M_2 + i(M_{12} + M_{21}) = \frac{8h^3}{3}M \{i\partial^2 \tau(z, \bar{z}) + h^2[I - \hat{A}^{-1}(\hat{A}^{-1} - \hat{A})^{-1}A^{-1} \times
\]

\[\times (I + 2\Gamma)A] \phi'(z) - 2\hat{A}^{-1} \partial^2 \chi(z, \bar{z})\},
\]

\[M_1 + M_2 + i(M_{12} - M_{21}) = -2h \{2(B^* - \lambda S)(A + B^*)^{-1}(I + 2\Gamma)^{-1}A \times
\]

\[\times (\hat{A}^{-1} - \hat{A})\chi(z, \bar{z}) + i\lambda S(I + 2\Gamma)\tau(z, \bar{z})\},
\]

\[Q_+ = 2h(I + 2\Gamma)^{-1}(M + \lambda S) \{i\partial \tau(z, \bar{z}) + h^2\phi'(z)\},
\]

\[+Q = 2h(I + 2\Gamma)^{-1}(M - \lambda S) \{i\partial \tau(z, \bar{z}) + h^2\phi'(z)\}.
\]

94
$1. \quad N = 0$ მახასიათებები. ხორციური სახეში ფუნდამენტი არ ჰყოფს.

ჰორიონტალური ტოლემიური დონედან

ჰორიონტალური ტოლემიური დონედან სახეში რიგველად ფუნდამენტი ჰყოფს და ზემოთ დონედან გამოვიდეს სახეში.

(11)

$$a_1 \Delta u'_a + b_1 \partial_a \theta' + c \Delta u''_a + d \partial_a \theta'' = 0,$$
$$c \Delta u'_a + d \partial_a \theta + a_2 \Delta u''_a + b_2 \partial_a \theta'' = 0,$$
$$a_1 \Delta u_3' = \frac{1}{R} \partial u_3' + c \Delta u''_3 + \frac{1}{R} \partial \theta'' = 0,$$
$$c \Delta u'_3 - \frac{1}{R} \partial \theta' + a_2 \Delta u''_3 - \frac{1}{R} \partial \theta'' = 0,$$

სადაც $\theta' = \partial_a u'_a, \quad \theta'' = \partial_a u''_a.$

(11) სიტყვების ჰორიონტალური დონე გამოვიდეს. საბოლოო რიგის წინადმილებით ჰყოფს პირველი დონედან მხრივ გამოვიდეს სახეში.
(11) สมการเมื่อหมายเหตุ ดังนี้จะเป็น

\[
A \Delta U_+ + 2B \partial_\theta \theta = 0, \\
A \Delta U_3 - \frac{1}{\hat{\rho}} \hat{\Delta} \theta = 0,
\]

ดังนั้น

\[
U_+ = U_1 + iU_2 = (u_1' + iu_2', \ u_1'' + iu_2'' T, \ \theta = (\theta', \theta'')^T, \ U_3 = (u_3', u_3'')^T,
\]

\[
A = \begin{pmatrix} a_1 & c \\ c & a_2 \end{pmatrix}, \quad B = \begin{pmatrix} b_1 & d \\ d & b_2 \end{pmatrix}, \quad \hat{A} = A + 2(B - \lambda_5 S),
\]

\[
S = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad B - \lambda_5 S = M + \Lambda,
\]

\[
M = \begin{pmatrix} \mu_1 & \mu_3 \\ \mu_3 & \mu_2 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 - \frac{\alpha_2 \rho_2}{\rho} & \lambda_3 - \frac{\alpha_2 \rho_1}{\rho} \\ \lambda_4 + \frac{\alpha_2 \rho_2}{\rho} & \lambda_2 + \frac{\alpha_2 \rho_1}{\rho} \end{pmatrix}, \quad A = M - \lambda_5 S.
\]

สมการทั้งหมด (2.22) และ (3.38) ดังนั้นสมการ (12) สมการเมื่อหมายเหตุ

\[
2U_+ = A^* \varphi(z) - z \overline{\varphi'(z)} - \overline{\psi(z)},
\]

\[
2U_3 = \frac{1}{2R} A^{-1} \hat{A} B^{-1} A [\overline{z \varphi(z)} + z \overline{\varphi(z)}] + g(z) + \overline{g(z)}.
\]

ดังนั้น

\[
\varphi(z) = (\varphi_1(z), \varphi_2(z))^T, \quad \psi(z) = (\psi_1(z), \psi_2(z))^T, \quad g(z) = (g_1(z), g_2(z))^T,
\]

และ

\[
A^* = I + 2B^{-1} A.
\]

สมการทั้งหมด (2.24), (2.25) และ (3.39) ดังนั้นสมการ (12) สมการเมื่อหมายเหตุ

\[
P_{22} - \gamma_1 + i(P_{12} + P_{21}) = 2M[\overline{z \varphi''(z)} + \varphi'(z)],
\]

\[
P_{11} + P_{22} + i(P_{12} - P_{21}) = 2[(A - \lambda_5 SA^*) \overline{\varphi'(z)} + \overline{M \varphi'(z)}],
\]

\[
P_+ = \frac{1}{2R} [(\hat{A} B^{-1} A - AA^*) \varphi(z) + (\hat{A} B^{-1} + I) \overline{z \varphi'(z)}] + \overline{A g(z)} + \frac{A}{2R} \overline{\psi(z)},
\]

\[
+ P = (B - \Lambda) A^{-1} P_+.
\]

\[P_1\] เป็นตัวเองที่ 1 สมการเมื่อหมายเหตุ สมการ (12) สมการเมื่อหมายเหตุ

\[
(P_{11} + iP_{12}) d \gamma = (P_{11} + iP_{12}) \frac{dz - d \bar{z}}{2i} - (P_{21} + iP_{22}) \frac{dz + d \bar{z}}{2} =
\]

\[
- i[(P_{11} + P_{22} + i(P_{12} - P_{21})) \frac{dz}{2} + (P_{22} - P_{11} - i(P_{12} + P_{21})) \frac{d \bar{z}}{2}]
\]

\[
= - i \left\{ [(A - \lambda_5 SA^*) \overline{\varphi'(z)} + \overline{M \varphi'(z)}]dz + M[z \overline{\varphi''(z)} + \overline{\psi'(z)}]dz \right\}
\]

\[
= - id \left\{ (A - \lambda_5 SA^*) \overline{\varphi(z)} + M[z \overline{\varphi'(z)} + \overline{\psi(z)}] \right\},
\]

96
$d\{\}$ დროის გარკვეულებით გამოიყენება საშუალო დონებისთვის. ამავ- დროის თვითმკვლელობა

$$f(x_1, x_2) = f_1 + i f_2 := (A - \lambda_5 S A^*)\varphi(z) + M(z\varphi(z) + \psi(z)),$$

მაქს (19)-ის თხოვნის გარეშე

$$f(x_1, x_2) = i \int_0^7 (P_{11} + iP_{22})d\gamma + \text{const} = (A - \lambda_5 S A^*)\varphi(z) + M(z\varphi'(z) + \psi(z)), \quad (1.10)$$

$$\int_0^7 (P_{11} + iP_{22})d\gamma = P_1 + iP_2.$$

თუ s არის ურთიერთ ფუნქციური ფუნქცია, რომლის დიდება 1-ზე აქვს, მაშინ პროპოზიციები შედეგია ფიტომეტრიი.

$$P_{11} - iP_{12} = \frac{1}{2} \left\{ P_{11} + P_{22} - i(P_{12} - P_{21}) - [P_{22} - P_{11} + i(P_{12} + P_{21})]e^{2i\alpha} \right\},$$

$$P_{13} = Re(P_4 e^{-i\alpha}),$$

მაქს (15)-(18) ფიზიკური თხოვნის გადაწყვეტილება

$$P_{11} - iP_{12} = M\Phi(z) + (A - \lambda_5 S A^*)\overline{\Phi(z)} - M[\dot{z}\Phi'(z) + \Phi(z)]e^{2i\alpha}, \quad (1.11)$$

$$P_{13} = \frac{1}{2\pi} Re \left\{ [\overline{B} \int \Phi(z)dz + \overline{C}z\Phi(z) + 2RA\overline{G(z)} + A \int \Psi(z)dz]e^{-i\alpha} \right\}, \quad (1.12)$$

სადაც

$$\Phi(z) = \varphi'(z), \quad \Psi(z) = \psi'(z), \quad G(z) = g'(z), \quad \overline{B} = \overline{A}B^{-1}A - AA^*, \quad \overline{C} = (\overline{A}B^{-1} + I)A.$$

(15) ფიზიკური თხოვნის გადაწყვეტილება

$$P_{11} + P_{22} = (A + M - \lambda_5 S A^*)(\varphi'(z) + \overline{\varphi'(z)}) = 2(A + M)B^{-1}A(\varphi'(z) + \overline{\varphi'(z)}), \quad (1.13)$$

$$P_{12} - P_{21} = -i(A - \lambda_5 S A^*)(\varphi'(z) - \overline{\varphi'(z)}) = 2i\lambda_5 SB^{-1}(A + B)(\varphi'(z) - \overline{\varphi'(z)}). \quad (1.14)$$

თუ $\varphi(z)$, $\psi(z)$, $g(z)$ და $\varphi_*(z)$, $\psi_*(z)$, $g_*(z)$ ითვლია და იყიდება ლაშქარი გამჭვირვალეობის შესაძლო ამოცანებით ფიზიკური თხოვნის, მაქს (13). (14). (15) და (17) ფიზიკური თხოვნის გადაწყვეტილებისთვის

$$\varphi_*(z) = \varphi(z) + \gamma, \quad \psi_*(z) = \psi(z) + \gamma', \quad g_*(z) = g(z) + \eta z + \eta'.$$

(15)
საერთ, გა, გ' და ზ' - ნებისმიერი კომპლექსური სიმბოლოების საერთ-ძალის მასია, რომელსაც გარკვეული წინასწარმეტყველებით ნაწილი სკემა დაამტკიცა საერთ-ძალის მასია, ხოლო ხარჯვათ ნაწილობრივ დამატებით ბუთი გა გ' მასიამ ნაწილობრივ გამოყოფილი ზღვენი გამოყოფილი ხმა 3

\[\eta + \bar{\eta} = -\frac{1}{2R} A^{-1} [\bar{B}(\gamma + \bar{\gamma}) + A(\gamma' + \bar{\gamma}')] \].

მონაცემთა დამოკიდებულობით არ შეუფრთხება, თუ ღ(ზ), ჭ(ზ) და ღ(ზ) შეფასებისთვის ღ(ზ), ჭ(ზ) და ღ(ზ) სითხეები.

გარკვეული დადგენილი სრულყოფილი სიმბოლოები ან გარდაქცევა ღ(ზ), ჭ(ზ) და ღ(ზ) სითხეები.

\[ϕ(ზ) = γ lnz + ϕ\ast(ზ), \quad ψ(ზ) = γ' lnz + ψ\ast(ზ), \quad (11.16) \]

საერთ ღ(ზ), ჭ(ზ) - 3-ი სრულყოფილი დატვირთული შეფასებისთვის შემდგომი სიმბოლო (11.17).

\[γ, γ' სიმბოლოები დატვირთული შეფასებისთვის შეფასებისთვის სიმბოლო (11.17). \]

11.12 (12.12) ლარიჯანები ხელში დატვირთული ჯილდო, ამონი ტრანსპორტირებულ შეფასები მიმდებარე ბომბი ღ(ზ) დატვირთული არა-ლარიჯანული ტრანსპორტირებული შეფასები 3. ამ არის ნ-ი 3. ღ(ზ) დატვირთული სიმბოლო (11.16) ლარიჯანები ხელში დატვირთული ჯილდო, რომ

\[G(ზ) = η lnz + G\ast(ზ), \quad (11.17) \]

საერთ გ(ზ) - 3-ი სრულყოფილი დატვირთული შეფასებისთვის შემდგომი სიმბოლო (11.18), ამონი ნ-ი 3. გ.წ.

\[η - \bar{η} = -\frac{1}{2R} A^{-1} [\bar{B}(\gamma - \bar{\gamma}) + \gamma' - \bar{\gamma}']. \]

(11.18)-ის გამოყოფილი, ორნ ღ(ზ) დატვირთული ხმა 3

\[g(ზ) = η lnz + \gamma' lnz + g\ast(ზ), \quad (11.18) \]

საერთ გ(ზ) - 3-ი სრულყოფილი დატვირთული ჯილდო.

11.18 გ(ზ) გამოყოფილი დატვირთული ჯილდო.

ღ(ზ) გ(ზ) გამოყოფილი დატვირთული ჯილდო.

\[2[U_4]_{L'} = 2\pi i \left\{ A^{*}\gamma + \bar{\gamma}' \right\}, \]

\[2[U_3]_{L'} = 2\pi i \left\{ \left(\frac{1}{2R} A^{-1} \bar{A}B^{-1} A\gamma - \bar{\eta} \right) z + \left(-\frac{1}{2R} A^{-1} \bar{A}B^{-1} A\bar{\gamma} + \eta \right) \bar{z} + \eta' - \bar{\gamma}' \right\}, \]

საერთ []-ი არა-ლარიჯანული გამოყოფილი ჯილდო წინასწარ არის 3-ი ხმა 3-ი.
ანგარიში. განისაზღვრეთ მდგრადობის ათვისება და საჭიროება, რომ გამოკვეთოთ

\[A^* \gamma + \tilde{\gamma} = 0, \quad \frac{1}{2R} A^{-1} \tilde{A} B^{-1} A \gamma - \tilde{\eta} = 0, \quad \eta' - \tilde{\eta}' = 0. \]
(19)

თუ გამოვანიჭოთ (1.10) ფორმულა L' ის კონტრავერსია პროცესი, შეფასება

\[P_1 + iP_2 = -i[(A - \lambda S A^*) \phi(z) + M(z \phi'(z) + \psi(z))] L'. \]

საიდუმლო (116) ფორმულის საფუძვლებში გამოყოფილი (L'-ს მომენტით იღებდა საიდუმლო მოდულობრივში)

\[P_1 + iP_2 = -2\pi [(A - \lambda S A^*) \gamma - M \gamma]. \]

აქეობა, თუ გამოვანიჭოთ (119) ფორმულა M-ის კონტრავერსია ათვისება გამოყოფილი

\[\gamma = -\frac{1}{2\pi} (I + A^*)^{-1} A^{-1} (P_1 + iP_2), \quad \gamma' = \frac{1}{2\pi} (I + A^{-1}) A^{-1} (P_1 - iP_2). \]

ფორმულით ამჯერად, გამოვეთ ფუნქცია ახ. გ. ლ_2 კონტრავერსია მოითხოვს გამო ფუნქციას ახ. გ. ლ_1 კონტრავერსიან, ხშირად \(L_1 \)-ს გამოვითხოვთ ფორმულები

\[\phi(z) = -\frac{1}{2\pi} (I + A^*)^{-1} A^{-1} (P_1 + iP_2) \ln z + \Gamma z + \phi_0(z), \]
(20)

\[\psi(z) = \frac{1}{2\pi} (I + A^{-1}) A^{-1} (P_1 - iP_2) \ln z + \Gamma' z + \psi_0(z), \]
(21)

საიდუმლო \(\phi_0(z) \) და \(\psi_0(z) \) ფუნქციები საჭირო ახ. ჟლ. | z | - ზოგადი დერივატ ახ. ჟლ.

\[\phi_0(z) = a^0 + \frac{a^1}{z} + \frac{a^2}{z^2} + \cdots, \quad \psi_0(z) = a'^0 + \frac{a'^1}{z} + \frac{a'^2}{z^2} + \cdots, \]

საიდაც

\[a^j = (a^j_1, a^j_2)^T, \quad a'^j = (a'^j_1, a'^j_2)^T, \quad j = 0, 1, \ldots \]

ხშირად გამოყოფილი, რომ ფუნქციის კომპონენტები ახ. ჟლ. გ. ბ.

\[P_{12}^\infty = P_{21}^\infty, \]

საიდან (114) და (120) ფორმულების საფუძვლები გამოყოფილი გამოყოფილი, რომ გ. ბაგაველი საიდუმლო, გ. ბ.

\[\Gamma = \Gamma, \]
(22)

ხშირ (15) და (16) ფორმულების საფუძვლები გამოყოფილი

\[P_{11}^\infty = 2(\Lambda + M) B^{-1} A \Gamma - MB', \quad P_{22}^\infty = 2(\Lambda + M) B^{-1} A \Gamma + MB', \quad \frac{1}{2} (P_{12} + P_{21})^\infty = P_{11}^\infty = MC', \]
(23)
\[B' = \text{Re} \Gamma', \quad C' = \text{Im} \Gamma'. \]

Consider the following sets of equations with \(S \) and \(\tau \) satisfying certain conditions. In particular:

\[z = \omega(\xi) \]

where \(\xi = \rho e^{i\theta} \) and \(\rho \) is chosen such that \(\Gamma' > 0 \) in the interval \(\sigma \). Thus, the integrals of \(\Psi' \) and \(\Phi' \) are

\[\varphi'(\xi) = \varphi(z) = \Psi(\omega(\xi)), \quad \psi'(\xi) = \psi(z) = \psi(\omega(\xi)), \quad g'(\xi) = g(z) = g(\omega(\xi)), \quad (124) \]

\[\Phi'(\xi) = \Phi(z) = \frac{d\phi}{dz} = \frac{\varphi'(\xi)}{\omega'(\xi)}, \quad \Psi'(\xi) = \Psi(z) = \frac{\psi'(\xi)}{\omega'(\xi)}, \quad G'(\xi) = G(z) = \frac{g'(\xi)}{\omega'(\xi)} \quad (125) \]

demonstrates the following relationships:

\[e^{2i\sigma} = \frac{\xi^2 \omega'(\xi)}{\rho^2 \omega'(\xi)}, \quad e^{-i\sigma} = \frac{\xi}{\rho} \left| \omega'(\xi) \right| \quad (126) \]

Consider:

\[P_{\theta\theta} - P_{\rho\rho} + i(P_{\theta\rho} + P_{\rho\theta}) = \frac{2M \zeta^2}{\rho^2 \omega'(\xi)} \left[\omega(\xi) \Phi'(\xi) + \omega'(\xi) \Psi'(\xi) \right], \quad (127) \]

\[P_{\theta\theta} + P_{\rho\rho} + i(P_{\theta\rho} - P_{\rho\theta}) = 2(A - \lambda_5 S A^*) \Phi'(\xi) + M \Phi'(\xi), \quad (128) \]

\[P_+ = \frac{1}{2R} \left[\tilde{B} \int \Phi'(\xi) \omega'(\xi) d\xi + \tilde{C} \omega(\xi) \Phi'(\xi) + 2R \omega(\xi) \Phi'(\xi) + A \int \Psi'(\xi) \omega'(\xi) d\xi \right]. \quad (129) \]

(13) Demonstrate (124)-(126) for the following conditions and evaluate:

\[2 \left| \omega'(\xi) \right| (U_\rho + iU_\theta) = \frac{\xi}{2} \omega'(\xi) \left\{ A^* \varphi(\xi) - \frac{\omega(\xi)}{\omega'(\xi)} \varphi(\xi) - \psi(\xi) \right\}. \quad (130) \]

Moreover, for certain combinations of the following conditions (specifically, when certain parameters are chosen), the following expressions hold:

1. \((A - \lambda_5 S A^*) \varphi(\sigma) + M \left(\frac{\omega(\sigma)}{\omega'(\sigma)} \varphi(\sigma) + \psi(\sigma) \right) = f_1 + i f_2 + \text{const}, \quad \gamma - \varepsilon_7, \quad (131) \]

\[\frac{1}{2R} \text{Re} \left[\left(\tilde{B} \varphi(\sigma) + \tilde{C} \frac{\omega(\sigma)}{\omega'(\sigma)} \varphi(\sigma) + 2RA \frac{1}{\omega'(\sigma)} \varphi(\sigma) + A \psi(\sigma) \right) \frac{\sigma^{-1} \omega'(\sigma)}{\left| \omega'(\sigma) \right|} \right] = P_{\rho\rho}, \quad \gamma - \varepsilon_7 \]

(11) (13) for certain values of \(A \) and \(M \), the following expressions are valid:

2. \(M \Phi(\sigma) + (A - \lambda_5 S A^*) \Phi(\sigma) - \frac{\sigma^2 M}{\omega'(\sigma)} \omega(\sigma) \Phi(\sigma) + \omega(\sigma) \Psi(\sigma) \) = \(P_{\rho\rho} - i P_{\rho\theta} \), \quad \gamma - \varepsilon_7 \quad (132) \]

Accordingly, (130)-(132) for the following values of the parameters: \(\lambda_5, \) and \(S \) given conditions.
§2. ფუნსიონალური არა წიაღიანი სხეულები

განწყობით, გვარდია ფუნსიონალური არა რა ხარჯისგან წიაღიანი სხეულები. თავიდან აღმართულნი შუქთა პარამეტრების მნიშვნელობას გამოკვთავდნენ მნიშვნელობით მიღწევის გარკვეული შემთხვევების უნარაფრთხოვანი აღმართვის ხარჯების გამჭვირვალად.

\[r_{rr} - i r_{r\theta} = 0, \quad r_{r\theta} = 0, \quad r_{\theta\theta} = r_{rr}, \] (2.1)

მოთხრობა ფუთაგიანთმა შეფარდებათ \(O_{x_1} \) გზის პარამეტრი ლურჯი აღმართვის მნიშვნელობა მატრიცა.

\[r_{11} = \alpha e^p, \quad r_{22} = r_{12} = \tau_{12} = \tau_{21} = \tau_{33} = 0, \] (2.2)

იმედია აქვთ (\(p', p'' \))\(^T\), ხოლო \(p' \) ნოთი მდგომადობა.

პროფილი მიმართულიყო წყურები შერეულ თაობა (2.13), (2.14) წყურები გამოსახულება სხეულებს გრანი-კრამასათვის მატრიცი ფუნქციების მიმართ. ამგვარად სხეულებს (2.1) და (2.2) სასწავლებელ პირობების გათევასთან ახლოს დადგა

\[P_{11}^{(1)} = P_{12}^{(1)} = 0, \quad U_{3}^{(1)} = 0; \]

მისაღებად გვარდია ექვემდებარე სასწავლებლო პირობები.

\[P_{rr}^{(1)} - i P_{r\theta}^{(1)} = 0, \quad r_{r\theta} = r_{rr}, \quad P_{11}^{(1\infty)} = p, \quad P_{22}^{(1\infty)} = P_{12}^{(1\infty)} = P_{21}^{(1\infty)} = 0. \] (3.3)

(111) დროებითი ხანგრძლობა (2.3)-ში პროფილი პარამეტრი გამოსახულები შენახვალა,

\[P_{rr}^{(1)} - i P_{r\theta}^{(1)} = M \Phi^{(1)}(z) + (A - \lambda_3 S A^*) \Phi^{(1)}(z) - M (\bar{z} \Phi^{(1)}(z) + \psi^{(1)}(z)) e^{2i\theta} = 0, \quad r = r_0, \] (2.4)

იმედია აქვთ \(z = r e^{i\theta} \), ნოთი პროფილი მიმართული გამოსახულება ფუნქციები დამოუკიდებლობის შერეულ ფუნქციები დამატებით

\[\Phi^{(1)}(z) = \sum_{n=0}^{\infty} a_n^{(1)} z^{-n} = \sum_{n=0}^{\infty} \frac{a_n^{(1)}}{r^n} e^{-in\theta}, \quad \psi^{(1)}(z) = \sum_{n=0}^{\infty} b_n^{(1)} z^{-n} = \sum_{n=0}^{\infty} \frac{b_n^{(1)}}{r^n} e^{-in\theta}. \] (2.5)

იმედია \(a_n^{(1)} = (a_n^{(1)}', \ a_n^{(1)}'')^T, \ b_n^{(1)} = (b_n^{(1)}', \ b_n^{(1)}'')^T \)-საფართხერთ კომპლექსური რაციონალური ფუნქციები საშუალო-შესაბამო შედგება.

თაობა რეალური თაობამდებლობით სასწავლებლო პირობებში, ადგილა წყურე პროფილი ან (120), (121) დროებით ხანგრძლობა გამოსახულება,

\[a_1^{(1)} = b_1^{(1)} = 0. \]

წყურე პროფილი ან (122), (123) დროებით ხანგრძლობა და ფუნსიონალური პროფილი შეფარდება დულა გამოთქვამი, რომ \(a_0^{(1)} \) და \(b_0^{(1)} \) კომპლექსური რაციონალური ფუნქციები და ძლილ გამოთქვამებთან შედგენილი სხეულით

\[2(\Lambda + M) B^{-1} A a_0^{(1)} - M b_0^{(1)} = \epsilon p, \quad 2(\Lambda + M) B^{-1} A a_0^{(1)} + M b_0^{(1)} = 0, \]
\[
a_0^{(1)} = \frac{1}{4} A^{-1} B (A + M)^{-1} p, \quad b_0^{(1)} = -\frac{1}{2} M^{-1} p. \quad (2.6)
\]

\[
\sum_{n=0}^{\infty} M \frac{1 + n}{r_0^n} a_n^{(1)} e^{-\iota \theta} + (A - \lambda_5 S A^*) \sum_{n=0}^{\infty} \frac{a_n^{(1)}}{r_0^n} e^{\iota \theta} - M b_0^{(1)} e^{2\iota \theta} - M \sum_{n=0}^{\infty} \frac{b_n^{(1)}}{r_0^n} e^{-\iota \theta} = 0, \quad r = r_0 - \beta g. \quad (2.7)
\]

(2.7) ფილუმში ბოლო სინოტელი შეუძლიათ რეჟიმმა წარმოდგენილი ჰქონა და გახვალული ფორმით, რომ ა_0^{(1)} ნადრობთ, (2.6) ფილურებით და \(A - \lambda_5 S A^* + M = 2(A + M) B^{-1} A \). ა_2^{(1)}-სხვა ფაქტორები შეიძლება იმოქმედონ შემდეგ

\[
b_2^{(1)} = -r_0^2 b_0^{(1)} = r_0^2 M^{-1} p.
\]

\(e^{\iota \theta} \) კომპლექსური წინადადები, როდესაც კომპლექსური ღრმები, 0-ში ფაქტო. იმსახურებს მონაცემებს, თუმცა კომპლექსური ღრმები გაზრდილი 0-ში და სხვა დატვირთული გაზრდილი ღრმები (1.19) ითვლება.

\(e^{2\iota \theta} \) კომპლექსური ღრმები წყვა ნევროლოგიაში გამოიყენება შემდეგ

\[
\frac{1}{r_0^2} (A - \lambda_5 S A^*) a_2^{(1)} - M b_0^{(1)} = 0,
\]

სადაც \(a_2^{(1)} = \bar{a}_2^{(1)} \). \(A - \lambda_5 S A^* \) მართვის შესრულებით და გამოსახული აქვთ

\[
a_2^{(1)} = -\frac{r_0^2}{2} (A - \lambda_5 S A^*)^{-1} p. \quad (2.8)
\]

(2.8) ფილურებით 0-ში ტიპის წინადადები, რომლები გაძლენ გაზრდილობით შესრულებით

\[
(A - \lambda_5 S A^*) a_n^{(1)} = 0, \quad n \geq 3. \quad (2.9)
\]

(2.9) სხვა დატვირთულები რომ გაყოლილი ღრმები შეიძლება გაჰქონათ ღრმები (1.19) შემდეგ

\[
a_n^{(1)} = 0, \quad \text{როდესაც} \quad n \geq 3. \quad (2.10)
\]

\(e^{-\iota \theta} \) კომპლექსური წინადადები წყვა ნევროლოგიაში გაზრდილი შესრულებით მართვის გაზრდილი შესრულებით

\[
M b_3^{(1)} = 0,
\]

სადაც

\[
b_3^{(1)} = 0.
\]

\(e^{2\iota \theta} \) კომპლექსური წინადადები წყვა ნევროლოგიაში გაჰყოლათ ღრმები შესრულებით

\[
M \left(\frac{3}{r_0^2} a_2^{(1)} - \frac{1}{r_0^4} b_4^{(1)} \right) = 0,
\]

102
(2.9) ფორმულის გათვალისწინებით გამოგება

\[b^{(1)}_4 = -\frac{3}{2} \frac{r_0^4}{A - \lambda_5 S A^*}^{-1} p. \]

(2.7) სასიმშვილო პირობები შეიძლება ჰყოფილი როლით გამოვყენოთ და (2.10)-ის ჰარმონიური განცხადების შედეგად გაგრძელდება მაგალითი გარკვეული დანარჩენი პირობები.

\[M^{(1)}_{n+2} = 0, \quad n \geq 3, \]

(2.11)

(2.12)

\[\Phi^{(1)}(z) = a^{(1)}_0 + \frac{a^{(1)}_2}{z^2}, \quad \Psi^{(1)}(z) = b^{(1)}_0 + \frac{b^{(1)}_2}{z^2} + \frac{b^{(1)}_4}{z^4}. \]

(2.13),(1.4) და (1.5) ფორმულების თბილები გამოვყენებთ.

\[P^{(1)}_{rr} + P^{(1)}_{\theta\theta} = \varepsilon \left\{ p - \frac{2r_0^2}{r^2} (B - \lambda_5 S) B^{-1} A (A - \lambda_5 S A^*)^{-1} \cos 2\theta \right\} p, \]

\[P^{(1)}_{rr} - P^{(1)}_{\theta\theta} = \left\{ \frac{r_0^2}{r^2} \left[I - M (A - \lambda_5 S A^*)^{-1} \sin 2\theta \right] \right\} p, \]

\[P^{(1)}_{\theta\theta} - P^{(1)}_{rr} + i (P^{(1)}_{rr} + P^{(1)}_{\theta\theta}) = \left\{ \frac{2r_0^2}{r^2} M (A - \lambda_5 S A^*)^{-1} e^{-2i\theta} - \right. \]

\[- i e^{2i\theta} + \frac{r_0^2}{r^2} I - \frac{3r_0^4}{r^4} M (A - \lambda_5 S A^*)^{-1} e^{-2i\theta} \right\} p, \]

(2.14)

(2.15)

\[P^{(1)}_{r\theta} = -\frac{1}{2} \left\{ \left[I + \frac{r_0^2}{r^2} (3M (A - \lambda_5 S A^*)^{-1} - I) - \frac{3r_0^4}{r^4} M (A - \lambda_5 S A^*)^{-1} \right] \sin 2\theta \right\} p, \]

\[P^{(1)}_{r\theta} = -\frac{1}{2} \left\{ \left[I + \frac{r_0^2}{r^2} (I + M (A - \lambda_5 S A^*)^{-1}) - \frac{3r_0^4}{r^4} M (A - \lambda_5 S A^*)^{-1} \right] \sin 2\theta \right\} p. \]

(2.13)–(2.16) ფორმულებით ყველა შესაძლო წინა უმრავლებს მაშინ, როდესაც \(\lambda_5 = 0, \) \(A = M \) და გარკვეული მნიშვნელობა მაშინ, როდესაც \(p' = p'' . \) იქნება პირველმა და მეოთხემმა პირველმა ტოლოვანი გეგმები. განვადონ პირველმა ტოლოვან და მეოთხემმა ტოლოვან გეგმები.
გამოთქმული შეთქმული პროცესით დომანის ნაწილები არის ლაინიული ლიმიტის ფორმალურ ფილტრილებულ წერტილებში შედგენილი 2.15, 2.16 დონისურ მქონექანი (1.3) და ხომალდი, რომ ამ პროცესს მხოლოდ უნტი 1 ≠ 0 არ ხდება.

თუ (2.14) და 2.16 დონისურ მქონექანი ლიმიტებზე რ = r₀, შეიძლება გვითვალისწინოთ P₀θ და P₀r საჭირო არხმართვებში ტერმინებთან (P₀θ₁ = P₀r₁ = 0 რ = r₀ და შემდგომ)

\[P₀θ₁ = \{ I - \left[I + M(A - λS^*A)^{-1}\right] \cos 2θ \} p, \]
\[P₀r₁ = -\left\{ I - \left[I - M(A - λS^*A)^{-1}\right] \sin 2θ \right\} p. \]

თუ M(A - λS^*A)^{-1} არომ ლაინიული ლიმიტები შეიძლება, შეიძლება P₀θ₁ საჭირო შეწყობი თვალსაზრისში მივითავით, როგორიც cos2θ = -1, ჟ.

\[\theta = \pm \frac{\pi}{2} \]

თუ 2.17 დონისურ მქონექანი შეთქმულ

\[(P₀θ₁)^{(1)} \max = \{ 2I + M(A - λS^*A)^{-1}\} p. \]

თუ შეიძლება P₀r₁ საჭირო არხმართვებში ტერმინებთან (2.7) ყველა θ ჯამში შეწყობი შეწყობი შეწყობი შეწყობი შეწყობი

\[\theta = \frac{\pi}{4}, \quad \theta = \frac{3\pi}{4}, \quad \theta = \frac{5\pi}{4}, \quad \theta = \frac{7\pi}{4} \]

(2.18) დონისურ შეთქმული შექმები

\[(P₀r₁)^{(1)} \max = -\left\{ I - M(A - λS^*A)^{-1}\right\} \varepsilon p. \]

თუ 2.19 დონისური არხმართვები ლაინიული ლიმიტები P₀θ₁ შეიძლება, რომ შეწყობით (P₀θ₁)^{(1)} \max = 3\varepsilon p, \quad (P₀θ₁)^{(1)} \max = 3\varepsilon p. \] (2.18) ფილტრილებულ დრო რჩება, რომ მხოლოდ პიქტოლმა P₀r₁ 0 დგება, ლაინიული ლიმიტი გამოთქმული შეთქმულ შექმებაში შეფარდები განლაგებით 3-ში შეთქმულ.

(2.18) ფილტრილებულ დრო რჩება, რომ მხოლოდ პიქტოლმა P₀r₁ 0 დგება, ჩვენ შეყვანს ამოცანი შექმებაში მიწოდებო ლაინიული ლიმიტი (M(A - λS^*A)^{-1} გარდაქმნილი შეთქმულ)

\[k₁^{(1)} := \frac{(P₀θ₁)^{(1)} \max}{p}, \quad k₁^{(1)} := \frac{(P₀θ₁)^{(1)} \max}{p}, \quad k₂^{(1)} := \frac{(P₀θ₁)^{(1)} \max}{p}, \quad k₂^{(1)} := \frac{(P₀θ₁)^{(1)} \max}{p}, \]

\[M(A - λS^*A)^{-1} := \left(\begin{array}{ccc} m_{11} & m_{12} \\ m_{12} & m_{22} \end{array} \right), \]

\[k₁^{(1)} = 2 + m_{11} + \frac{p}{p'} m_{12}, \quad k₁^{(1)} = 2 + m_{22} + \frac{p}{p'} m_{12}, \]

\[k₂^{(1)} = m_{11} - 1 + \frac{p}{p'} m_{12}, \quad k₂^{(1)} = m_{22} - 1 + \frac{p}{p'} m_{12}. \]
(2.12) equation's coefficients and the coefficients of the equation of the plane of the field:

\[\varphi^{(1)}(z) = \frac{1}{4} \left\{ A^{-1}B(B - \lambda_5 S)^{-1}z + \frac{2r_0^2}{3}(A - \lambda_5 S A^*)^{-1} \right\} \eta, \]

\[\psi^{(1)}(z) = -\frac{1}{2} \left\{ M^{-1}z + \frac{r_0^2}{z} M^{-1} - \frac{r_0^4}{z^3}(A - \lambda_5 S A^*)^{-1} \right\} \eta. \]

The wave function (1.3) of the field in the form of

\[U^{(1)}(1) + iU^{(1)}(2) = \frac{1}{8} \left\{ (A^* - I)A^{-1}B(B - \lambda_5 S)^{-1}r + \frac{2r_0^2}{r}(A^* e^{-2i\theta} + I e^{2i\theta}) \times (A - \lambda_5 S A^*)^{-1} + 2M^{-1}e^{-2i\theta} + \frac{2r_0^2}{r} M^{-1} - \frac{2r_0^4}{r^3}(A - \lambda_5 S A^*)^{-1}e^{2i\theta} \right\} \eta, \]

satisfies, of course, the quantum-mechanical boundary and the quantum-mechanical conditions, namely,

\[U^{(1)}(1) = \frac{1}{8r} \left\{ (A^* - I)A^{-1}B(B - \lambda_5 S)^{-1}r^2 + 2r_0^2 M^{-1} + 2r_0^2 (A^* + I)(A - \lambda_5 S A^*)^{-1} + r^2 M^{-1} - \frac{r_0^4}{r^2}(A - \lambda_5 S A^*)^{-1}\cos 2\theta \right\} \eta, \]

\[U^{(1)}(2) = -\frac{1}{4r} \left\{ r_0^2 (A^* - I)(A - \lambda_5 S A^*)^{-1} + r^2 M^{-1} + \frac{r_0^4}{r^2}(A - \lambda_5 S A^*)^{-1}\sin 2\theta \right\} \eta. \]

The boundary conditions for the field (2.10) and (2.11), (2.2), (2.3), (2.4) satisfy the conditions of the quantum field's boundary conditions. The field's quantum-mechanical coefficients satisfy the boundary conditions of the quantum field's boundary conditions. The boundary conditions of the quantum field's boundary conditions are expressed by the boundary conditions of the quantum field (2.6), (2.12) and (2.13). The boundary conditions of (2.10) and (2.11) satisfy the boundary conditions of the quantum field's boundary conditions.

\[\partial_\tau (r_{11}^{(2)} - r_{22}^{(2)} + i(r_{12}^{(2)} + r_{21}^{(2)})) + \partial_\tau (r_{11}^{(3)} + r_{22}^{(3)} + i(r_{12}^{(3)} - r_{21}^{(3)})) = 0. \]

The boundary conditions of (2.10) and (2.11) satisfy the conditions of the boundary conditions of the quantum field's boundary conditions.

\[P_{11}^{(2)} - P_{22}^{(2)} + i(P_{12}^{(2)} + P_{21}^{(2)}) = 4M(\eta_{22} U_{22}^{(2)} + \partial_\tau U_{22}^{(1)} + \partial_\tau U_{21}^{(1)}), \]

\[P_{11}^{(2)} + P_{22}^{(2)} + i(P_{12}^{(2)} - P_{21}^{(2)}) = 2B\theta^2 - 4\lambda_5 S \partial_\tau U_{22}^{(2)} + 2(A + M)(\partial_\tau U_{22}^{(1)} + \partial_\tau U_{21}^{(1)} + \partial_\tau U_{21}^{(1)} + \partial_\tau U_{21}^{(1)}). \]

The boundary conditions of (2.11) and (2.22) satisfy the conditions of the boundary conditions of the quantum field's boundary conditions.

\[\tau_{11}^{(2)} - \tau_{22}^{(2)} + i(\tau_{12}^{(2)} + \tau_{21}^{(2)}) = P_{11}^{(2)} - P_{22}^{(2)} + i(P_{12}^{(2)} + P_{21}^{(2)}) +
\]

\[+ (P_{11}^{(1)} - P_{22}^{(1)} + i(P_{12}^{(1)} + P_{21}^{(1)})) \partial_\tau U_{22}^{(1)} + (P_{11}^{(1)} + P_{22}^{(1)} - i(P_{12}^{(1)} - P_{21}^{(1)})) \partial_\tau U_{21}^{(1)}, \]

\[\tau_{11}^{(2)} + \tau_{22}^{(2)} + i(\tau_{12}^{(2)} - \tau_{21}^{(2)}) = P_{11}^{(2)} + P_{22}^{(2)} + i(P_{12}^{(2)} - P_{21}^{(2)}) +
\]

\[+ (P_{11}^{(1)} + P_{22}^{(1)} + i(P_{12}^{(1)} - P_{21}^{(1)})) \partial_\tau U_{22}^{(1)} + (P_{11}^{(1)} - P_{22}^{(1)} - i(P_{12}^{(1)} + P_{21}^{(1)})) \partial_\tau U_{21}^{(1)}. \]
\(\Delta U^{(2)} + 2B\partial z\theta^{(2)} = -F^{(2)} \),

(2.25)

With

\[
F^{(2)}_+ = 4(M\partial zU^{(1)}_+ \circ \partial^2 z U^{(1)}_+ + [(\Lambda + M)\theta^{(1)}] \circ \Delta U^{(1)}_+ + \frac{1}{2}(\Lambda + 3M)[\Delta U^{(1)}_+ \circ \partial_U^{(1)} + \Delta U^{(1)}_+ \circ \partial^2 U^{(1)}_+] + \frac{1}{2}(\Lambda + M)[\partial_U^{(1)} \circ \partial^2 \overline{U}^{(1)}_+ + \partial_U^{(1)} \circ \partial^2 U^{(1)}_+]
\]

(2.26)

Using the identities from the previous work, it follows that

\[
F^{(2)}_+ = \frac{1}{z^3} A_1 + \frac{1}{z^2} A_2 + \frac{1}{z^5} A_3 + \frac{1}{z^2} A_4 + \frac{1}{z^3} A_5 + \frac{1}{z^4} A_6 + \frac{1}{z^5} A_7 + \frac{1}{z^6} A_8 + \frac{1}{z^4} A_9 + \frac{1}{z^5} A_{10} + \frac{1}{z^6} A_{11}
\]

(2.27)

For \(A_1, A_2, ..., A_{11} \) calculated similarly to (27) and (28).

\[
A_1 = 2(Mb^{(1)}_0 \circ (A^* a^{(1)}) \circ (A^* b^{(1)}) - (\Lambda + 3M)(a^{(1)}_2 \circ b^{(1)}_2)
\]

\[
A_2 = 8[(\Lambda + M)B^{-1} a^{(1)}_0 \circ a^{(1)} - (\Lambda + 3M)(a^{(1)}_2 \circ (a^{(1)}_2 - A^* a^{(1)}_0)] - (\Lambda + M)(A^* a^{(1)}_0 - a^{(1)}_0) \circ (A^* a^{(1)}_2) - 2(Mb^{(1)}_0 \circ b^{(1)}_2 - (\Lambda + M)(b^{(1)}_2 \circ b^{(1)}_2)
\]

\[
A_3 = 4[(\Lambda + M)B^{-1} a^{(1)}_2 \circ a^{(1)} + (\Lambda + 3M)(a^{(1)}_2 \circ A^* a^{(1)}) - 4(Mb^{(1)}_0 \circ b^{(1)} - 2(\Lambda + M)(b^{(1)}_2 \circ b^{(1)}_2)
\]

\[
A_4 = -4(Ma^{(1)}_2 \circ (A^* a^{(1)}_0 + 4[(\Lambda + M)B^{-1} a^{(1)}_2 \circ a^{(1)} - (5\Lambda + 3M)(a^{(1)}_2 \circ a^{(1)} - (\Lambda + M)(a^{(1)}_2 \circ a^{(1)} - 12(Ma^{(1)}_2 \circ a^{(1)}_2
\]

\[
A_5 = 2(Mb^{(1)}_2 \circ (A^* a^{(1)}_0 + 4(Ma^{(1)}_2 \circ b^{(1)}_2 + (\Lambda - M)(a^{(1)}_2 \circ b^{(1)}_2),
\]

\[
A_6 = -6(Mb^{(1)}_2 \circ a^{(1)}_0 - 3(\Lambda + M)(b^{(1)}_2 \circ a^{(1)}_2),
\]

\[
A_7 = -4(Mb^{(1)}_2 \circ b^{(1)}_2 - 2(\Lambda + M)(b^{(1)}_2 \circ b^{(1)}_2),
\]

\[
A_8 = 2(Ma^{(1)}_2 \circ (A^* a^{(1)}_2 - 2M(a^{(1)}_2 \circ b^{(1)}_2) + 8(Ma^{(1)}_2 \circ b^{(1)}_4 - 6(Mb^{(1)}_2 \circ a^{(1)}_2),
\]

\[
A_9 = -2(Mb^{(1)}_4 \circ b^{(1)}_2 - (\Lambda + M)(b^{(1)}_4 \circ b^{(1)}_2),
\]

\[
A_{10} = -4(Mb^{(1)}_4 \circ b^{(1)}_2 - 2(\Lambda + M)(b^{(1)}_4 \circ b^{(1)}_2),
\]

\[
A_{11} = -6(Mb^{(1)}_6 \circ a^{(1)}_2 - 3(\Lambda + M)(b^{(1)}_6 \circ a^{(1)}_2).
\]

(2.25) shows the general solutions, with

\[
2U^{(2)}_+ = A^{*}\varphi^{(2)}(z) - z\varphi^{(2)}(z) - \psi^{(2)}(z) + \frac{1}{z^2} B_1 + \frac{1}{z^4} B_2 + \frac{1}{z^2} B_3 + \frac{1}{z^4} B_4 + \frac{1}{z^6} B_5 + \frac{z^2}{z^4} B_6 + \frac{1}{z^2} B_7 + \frac{1}{z^4} B_8 + \frac{1}{z^6} B_9 + \frac{1}{z^2} B_{10} + \frac{1}{z^4} B_{11} + \frac{1}{z^2} B_{12} + \frac{1}{z^4} B_{13}
\]

(2.28)
სახურავ B_1, B_2, \ldots, B_{13} ფუნქციონალური ნაწარმოები ბოჭკო-მსხვილიანეს გამოყენებით.

\[
B_1 = \frac{1}{2} B^0 A_2, \quad B_2 = \frac{1}{6} A^0 A_1 + \frac{1}{6} B^0 A_{11}, \quad B_3 = \frac{1}{12} B^0 A_3, \quad B_4 = \frac{1}{2} A^0 A_2,
\]
\[
B_5 = \frac{1}{6} A^0 A_3, \quad B_6 = \frac{1}{6} A^0 A_1 + \frac{1}{2} B^0 A_1, \quad B_7 = \frac{1}{2} (B^0 - A^0) A_4, \quad B_8 = \frac{1}{6} B_6 A_6 - \frac{1}{2} A^0 A_5,
\]
\[
B_9 = \frac{1}{3} A^0 A_6 - B^0 A_5, \quad B_{10} = \frac{1}{2} B^0 A_9 - \frac{1}{4} A^0 A_7, \quad B_{11} = \frac{1}{6} (B^0 - A^0) A_8,
\]
\[
B_{12} = \frac{1}{12} B^0 A_7 - \frac{1}{6} A^0 A_9, \quad B_{13} = \frac{1}{12} (B^0 - A^0) A_{10},
\]

სახურავ $A^0 := \frac{1}{2} A^{-1} (I - \frac{1}{2} B (A + B)^{-1}), \quad B^0 := \frac{1}{4} A^{-1} B (A + B)^{-1}$.

(2.21) ფუნქციონალურ (2.28)-ის და $U^{(1)}_+ -$ი შესრულებს ბინარნი ფუნქციონალები

\[
P_{22}^{(2)} - P_{11}^{(2)} + i(P_{12}^{(2)} + P_{21}^{(2)}) = 2M \left\{ 2 \psi^{(2)} (z) + \frac{1}{2} b_0 \otimes (A^* - I) a_0 + \frac{1}{z^2} B_2 - \frac{1}{z^2} B_2 + \frac{z}{z^3} B_3 + \frac{3}{z^2} B_5 \right. + \frac{1}{z^4} B_4 + \frac{1}{z^6} B_6 + \frac{1}{z^8} B_{14} + \left. \frac{1}{z^{10}} B_{15} \right\}
\]

\[
(2.29)
\]

სახურავ

\[
B_{-2} = b^{(1)} \otimes (A^* a_0^{(1)} - a_0^{(1)}), \quad B_{-2} = B_2 + \frac{1}{2} b_0 \otimes a_2^{(1)},
\]
\[
B_{-3} = 2B_4 - a_2^{(1)} (A^* a_0^{(1)} - a_0^{(1)}), B_{-4} = 4B_5 - a_2^{(1)} \otimes (A^* a_2^{(1)}),
\]
\[
B_{-4} = \frac{1}{2} b_4^{(1)} \otimes (A^* a_0^{(1)} - a_0^{(1)}) + \frac{1}{2} b_2^{(1)} \otimes (A^* a_2^{(1)}), \quad B_{14} = 2B_7 + a_2^{(1)} \otimes a_2^{(1)},
\]
\[
B_{15} = B_8 - \frac{1}{2} (b_4^{(1)} \otimes a_2^{(1)}), \quad B_{16} = 3B_{11} - \frac{1}{2} (b_4^{(1)} \otimes a_2^{(1)}), \quad B_{-6} = \frac{1}{2} b_4^{(1)} (A^* \otimes a_2^{(1)}).
\]

ახალგაზრდად, (2.22) ფუნქციონალურ ფუნქციონალები

\[
P_{22}^{(2)} + P_{11}^{(2)} + i(P_{12}^{(2)} - P_{21}^{(2)}) = 2[(A - \lambda S A^*) \varphi^{(2)} (z) + M \overline{\varphi^{(2)} (z)}] + C_0 + \frac{1}{z^2} C_{-2} + \frac{1}{z^3} C_{-3} + \frac{1}{z^4} C_{-4} + \frac{1}{z^5} C_{-5} + \frac{1}{z^6} C_{-6} + \frac{1}{z^7} C_{-7} + \frac{1}{z^8} C_{-8} + \frac{1}{z^9} C_{-9} + \frac{1}{z^{10}} C_{10} + \frac{1}{z^{11}} C_{11} + \frac{1}{z^{12}} C_{12} + \frac{1}{z^{13}} C_{13},
\]

\[
(2.30)
\]

სახურავ

\[
C_0 = \frac{1}{2} (\Lambda + M) [(A^* - I) a_0^{(1)}] \otimes ((A^* - I) a_0^{(1)}) + b_0^{(1)} \otimes b_0^{(1)}],
\]
\[
C_{-2} = \frac{1}{2} (\Lambda + M) [(A^* a_2^{(1)}) \otimes ((A^* - I) a_0^{(1)}) - ((A^* - I) a_0^{(1)}) \otimes a_2^{(1)} + b_0^{(1)} \otimes b_2^{(1)}] + MB^0 A_2,
\]
\[
C_{-3} = \frac{1}{2} (\Lambda + M) [(A^* a_2^{(1)}) \otimes ((A^* - I) a_0^{(1)}) - ((A^* - I) a_0^{(1)}) \otimes a_2^{(1)} + b_0^{(1)} \otimes b_2^{(1)}] + \frac{1}{2} C^0 A_2,
\]
\[
C_{-4} = -(\Lambda + M) (a_2^{(1)} \otimes b_0^{(1)}) - C^0 A_1 + \frac{1}{2} MB^0 A_{11},
\]

\[
C_{-5} = \frac{1}{2} (\Lambda + M) [(A^* a_2^{(1)}) \otimes ((A^* - I) a_0^{(1)}) - ((A^* - I) a_0^{(1)}) \otimes a_2^{(1)} + b_0^{(1)} \otimes b_2^{(1)}] + \frac{1}{2} C^0 A_2,
\]
\[
C_{-6} = -(\Lambda + M) (a_2^{(1)} \otimes b_0^{(1)}) - C^0 A_1 + \frac{1}{2} MB^0 A_{11},
\]

\[
\text{107}
\]
\[C_{-3} = -(\Lambda + M)(a_2^{(1)} \odot b_0^{(1)}) - 2MB^0A_1 + \frac{1}{3}C^0A_{11}, \]
\[C_{-4} = \frac{1}{2}(\Lambda + M)[b_0^{(1)} \odot b_4^{(1)}] - (A^*a_2^{(1)} \odot a_2^{(1)}) + \frac{1}{2}MB^0A_3, \]
\[C_{-4} = \frac{1}{4}(\Lambda + M)[b_0^{(1)} \odot b_4^{(1)}] - (A^*a_2^{(1)} \odot a_2^{(1)}) + \frac{1}{4}C^0A_3, \]
\[C_7 = \frac{1}{2}(\Lambda + M)[(A^*a_2^{(1)} \odot (A^*a_2^{(1)}) + 5a_2^{(1)} \odot a_2^{(1)} + b_2^{(1)} \odot b_2^{(1)}) + \frac{1}{2}(C^0 + 2MB^0)A_4, \]
\[C_8 = -(\Lambda + M)(a_2^{(1)} \odot b_2^{(1)}) + (C^0A_5 + \frac{2}{3}MB^0A_6), \]
\[C_9 = -(\Lambda + M)(a_2^{(1)} \odot b_2^{(1)}) + (C^0A_6 + 2MB^0A_5), \]
\[C_{10} = \frac{1}{2}(\Lambda + M)(b_2^{(1)} \odot b_2^{(1)}) + \frac{3}{2}A_7 + MB^0A_9, \]
\[C_{11} = \frac{1}{2}(\Lambda + M)(b_2^{(1)} \odot b_2^{(1)}) + \frac{3}{2}A_9 + \frac{1}{2}MB^0A_7, \]
\[C_{12} = -2(\Lambda + M)(a_2^{(1)} \odot b_4^{(1)}) + \frac{1}{4}(C^0 + 2MB^0)A_8, \]
\[C_{13} = \frac{1}{4}(\Lambda + M)(b_2^{(1)} \odot b_4^{(1)}) + \frac{1}{4}(C^0 + 2MB^0)A_{10}, \]
\[C^0 := \frac{1}{2}MA^{-1}B(A + B)^{-1} - \lambda SA^{-1}. \]

(2.23) \[[P_{11}^{(1)} - P_{22}^{(1)} + i(P_{12}^{(1)} - P_{21}^{(1)}][\partial_4 U^{(1)} + [P_{11}^{(1)} + P_{22}^{(1)} - i(P_{12}^{(1)} - P_{21}^{(1)})[\partial_4 U^{(1)} = \]
\[= -\left\{ \tilde{B}_0 + \frac{1}{z^2}\tilde{B}_1 + \frac{1}{z^2}\tilde{B}_4 + \frac{1}{z^2}\tilde{B}_5 + \frac{1}{z^2}\tilde{B}_6 + \frac{1}{z^2}\tilde{B}_7 + \frac{1}{z^2}\tilde{B}_8 + \frac{1}{z^2}\tilde{B}_9 \right\}, \]

(2.31)

\[\tilde{B}_0 = (Mb_0^{(1)}) \odot (A^* - I)a_0^{(1)} + b_0 \odot (A + M - \lambda SA^*)a_0^{(1)}, \]
\[\tilde{B}_1 = (Mb_0^{(1)}) \odot (A^*a_2^{(1)}) + (Ma_2^{(1)}) \odot b_0^{(1)}, \]
\[\tilde{B}_2 = -(Mb_0^{(1)}) \odot a_2^{(1)} + (Mb_2^{(1)}) \odot (A^* - I)a_0^{(1)} + \]
\[+ b_2^{(1)} \odot (A - \lambda SA^*)a_0^{(1)} + b_2 \odot (A + M - \lambda SA^*)a_0^{(1)}, \]
\[\tilde{B}_3 = -2(Ma_2^{(1)}) \odot (A^* - I)a_0^{(1)} - 2a_2^{(1)} \odot (A + M - \lambda SA^*)a_0^{(1)}, \]
\[\tilde{B}_4 = -2(Ma_2^{(1)}) \odot (A^*a_2^{(1)}) - 2(Ma_2^{(1)}) \odot a_2^{(1)}, \]
\[\tilde{B}_5 = (Mb_4^{(1)}) \odot (A^*a_2^{(1)}) + (Ma_2^{(1)}) \odot b_2, \]
\[\tilde{B}_7 = 2(Ma_2^{(1)}) \odot a_2^{(1)} - 2a_2^{(1)} \odot (A - \lambda SA^*)a_2^{(1)}, \]
\[\tilde{B}_6 = (Mb_2^{(1)}) \odot (A^* - I)a_0 - a_2 \odot (Mb_2^{(1)}) + b_4 \odot (A + M - \lambda SA^*)a_0 + b_2^{(1)} \odot (A - \lambda SA^*)a_2^{(1)}, \]
\[\tilde{B}_8 = (Mb_4^{(1)}) \odot (A^*a_2^{(1)}) + (Ma_2^{(1)}) \odot b_4^{(1)}, \]
\[\tilde{B}_9 = -(Mb_4^{(1)}) \odot a_2^{(1)} + b_4^{(1)} \odot (A - \lambda SA^*)a_2^{(1)}. \]

(2.24) \[[P_{11}^{(1)} + P_{22}^{(1)} + i(P_{12}^{(1)} - P_{21}^{(1)}][\partial_4 U^{(1)} + [P_{11}^{(1)} - P_{22}^{(1)} - i(P_{12}^{(1)} + P_{21}^{(1)})[\partial_4 U^{(1)} = \]
\[+ \frac{1}{z^2}\tilde{C}_1 + \frac{1}{z^2}\tilde{C}_2 + \frac{1}{z^2}\tilde{C}_3 + \frac{1}{z^2}\tilde{C}_4 + \frac{1}{z^2}\tilde{C}_5 + \frac{1}{z^2}\tilde{C}_6 + \frac{1}{z^2}\tilde{C}_7 + \]
\[+ \frac{1}{z^2}\tilde{C}_8 + \frac{1}{z^2}\tilde{C}_9 + \frac{1}{z^2}\tilde{C}_{10} + \frac{1}{z^2}\tilde{C}_{11} + \frac{1}{z^2}\tilde{C}_{12} + \frac{1}{z^2}\tilde{C}_{13}, \]

(2.32)
\[\tilde{C}_0 = ((A + M - \lambda_S A^* a_0) \circ (A^* - I) a_0 + (M b_0) \circ b_0), \]
\[\tilde{C}_1 = (A - \lambda_S A^* + M) a_0 \circ A^* a_2 + (M b_2) \circ b_0 + (A - \lambda_S A^*) a_2 \circ (A^* - I) a_0, \]
\[\tilde{C}_2 = (M b_0) \circ b_2 + (M a_2) \circ (A^* - I) a_0 - a_2 \circ (A + M - \lambda_S A^*) a_0, \]
\[\tilde{C}_3 = -2(M a_2) \circ b_0, \]
\[\tilde{C}_4 = -2(M b_0) \circ a_2, \]
\[\tilde{C}_5 = (A - \lambda_S A^*) a_2 \circ (A^* a_2 + (M b_4) \circ b_0, \]
\[\tilde{C}_6 = (M b_0) \circ b_4 - (M a_2) \circ a_2, \]
\[\tilde{C}_7 = (M a_2) \circ (A^* a_2) - a_2 \circ (A - \lambda_S A^*) a_2 + (M b_2) \circ b_2 + 4(M a_2) \circ a_2, \]
\[\tilde{C}_8 = -2(M b_2) \circ a_2, \]
\[\tilde{C}_9 = -2(M a_2) \circ b_2, \]
\[\tilde{C}_{10} = (M b_2) \circ b_4, \]
\[\tilde{C}_{11} = (M b_4) \circ b_2, \]
\[\tilde{C}_{12} = -2(M a_2) \circ b_4, \]
\[\tilde{C}_{13} = (M b_4) \circ b_4. \]

\[A_0^{(2)} , A_1^{(2)} , ..., A_{14}^{(2)} , B_0^{(2)} , B_1^{(2)} , ..., B_{13}^{(2)} \] าพัฒนา ญานวิทยา โครงสร้าง ที่เรียบง่าย ของเหล่านี้

\[A_0^{(2)} = M(b_0 \circ (A^* - I) a_0) + \tilde{B}_0, \quad A_1^{(2)} = 2MB_{-2} + \tilde{B}_2, \quad A_2^{(2)} = -2MB_{-2} + \tilde{B}_1, \]
\[A_3^{(2)} = 2MB_{-3} + \tilde{B}_3, \quad A_4^{(2)} = 2MB_{-5} + \tilde{B}_7, \quad A_5^{(2)} = 2MB_{-4} + \tilde{B}_6, \]
\[A_6^{(2)} = 6MB_0, \quad A_7^{(2)} = 2MB_{14} + \tilde{B}_4, \quad A_8^{(2)} = 2MB_{15} + \tilde{B}_5, \]
\[A_9^{(2)} = 6MB_3, \quad A_{10}^{(2)} = 8MB_{10}, \quad A_{11}^{(2)} = 2MB_{16} + \tilde{B}_8, \]
\[A_{12}^{(2)} = 2MB_{-6} + \tilde{B}_9, \quad A_{13}^{(2)} = 4MB_{12}, \quad A_{14}^{(2)} = 8MB_{13}, \]

\[B_0^{(2)} = C_0 + \tilde{C}_0, \quad B_1^{(2)} = C_{-3} + \tilde{C}_2, \quad B_2^{(2)} = C_{-2} + \tilde{C}_1, \]
\[B_3^{(2)} = C_{-3} + \tilde{C}_4, \quad B_4^{(2)} = C_{-2} + \tilde{C}_3, \quad B_5^{(2)} = C_{-4} + \tilde{C}_0, \]
\[B_6^{(2)} = C_{-4} + \tilde{C}_5, \quad B_7^{(2)} = C_0 + \tilde{C}_8, \quad B_8^{(2)} = C_2 + \tilde{C}_9, \]
\[B_9^{(2)} = C_7 + \tilde{C}_7, \quad B_{10}^{(2)} = C_{10} + \tilde{C}_{10}, \quad B_{11}^{(2)} = C_{11} + \tilde{C}_{11}, \]
\[B_{12}^{(2)} = C_{12} + \tilde{C}_{12}, \quad B_{13}^{(2)} = C_{13} + \tilde{C}_{13}. \]

ถ้า ผลิตภัณฑ์ ที่มีความซับซ้อน ที่มีความซับซ้อน (2.23), (2.29), (2.31) และ (2.24), (2.30), (2.32) หน่วยการบวก ที่มีความซับซ้อน ที่มีความซับซ้อน

\[\tau_{22}^{(2)} - \tau_{11}^{(2)} + i(\tau_{12}^{(2)} + \tau_{21}^{(2)}) = 2M [\tilde{z} \varphi^{(2)}(z) + \psi^{(2)}(z)] + A_0^{(2)} + \]
\[+ \frac{1}{z^2} A_1^{(2)} + \frac{1}{z^2} A_2^{(2)} + \frac{1}{z^2} A_3^{(2)} + \frac{1}{z^2} A_4^{(2)} + \frac{1}{z^4} A_6^{(2)} + \frac{1}{z^3} A_7^{(2)} + \frac{1}{z^2} A_8^{(2)} + \frac{1}{z^4} A_9^{(2)} + \frac{1}{z^5} A_{10}^{(2)} + \frac{1}{z^4} A_{11}^{(2)} + \frac{1}{z^6} A_{12}^{(2)} + \frac{1}{z^4} A_{13}^{(2)} + \frac{1}{z^5} A_{14}^{(2)} \] (2.33)

\[\tau_{11}^{(2)} + \tau_{22}^{(2)} - i(\tau_{12}^{(2)} - \tau_{21}^{(2)}) = 2[(A - \lambda_S A^{*}) \varphi^{(2)}(z) + M \psi^{(2)}(z)] + B_0^{(2)} + \]
\[+ \frac{1}{z^2} B_1^{(2)} + \frac{1}{z^2} B_2^{(2)} + \frac{1}{z^3} B_3^{(2)} + \frac{1}{z^2} B_4^{(2)} + \frac{1}{z^2} B_9^{(2)} + \frac{1}{z^2} B_{10}^{(2)} + \frac{1}{z^2} B_{11}^{(2)} + \frac{1}{z^4} B_5^{(2)} + \frac{1}{z^4} B_6^{(2)} + \frac{1}{z^5} B_7^{(2)} + \frac{1}{z^3} B_8^{(2)} + \frac{1}{z^4} B_{12}^{(2)} + \frac{1}{z^4} B_{13}^{(2)} \] (2.34)

ถ้าสัมผัสของอินเทอร์เซกชัน ที่มีความซับซ้อน ที่มีความซับซ้อน

\[\tau_{11}^{(2)} = \tau_{22}^{(2)} = \tau_{12}^{(2)} = \tau_{21}^{(2)} = 0. \] (2.35)
\[
\Phi^{(2)}(z) = (\varphi_1^{(2)}(z), \varphi_2^{(2)}(z))^T, \quad \Psi^{(2)}(z) = (\psi_1^{(2)}(z), \psi_2^{(2)}(z))^T
\]
are solutions of the homogeneous problem

\[
\Phi^{(2)}(z) = \sum_{n=0}^{\infty} a_n^{(2)} z^{-n} = \sum_{n=0}^{\infty} \frac{a_n^{(2)}}{r^n} e^{-in\theta}, \quad \Psi^{(2)}(z) = \sum_{n=0}^{\infty} b_n^{(2)} z^{-n} = \sum_{n=0}^{\infty} \frac{b_n^{(2)}}{r^n} e^{-in\theta}.
\] \hspace{1cm} (2.36)

Hence, the solution is

\[
B_9 = \frac{1}{3} A^0 A_6 - B^0 A_5 = 0,
\] \hspace{1cm} (2.37)

and the boundary condition is given by

\[
A_9^{(2)} = 0.
\]

The homogeneous problem for \(\Phi^{(2)}\) and \(\Psi^{(2)}\) is

\[
\tau_r^{(2)} - i\tau_\theta^{(2)} = 0, \quad r = r_0.
\] \hspace{1cm} (2.38)

Using (2.35) and (2.33) or (2.34), we obtain

\[
a_0^{(2)} = -\frac{1}{4} A^{-1} B(A + M)^{-1} B_0^{(2)}, \quad b_0^{(2)} = -\frac{1}{2} M^{-1} A_0^{(2)}.
\] \hspace{1cm} (2.39)

(2.38) is a homogeneous problem of the form

\[
M \Phi^{(2)}(z) + (A - \lambda S A^*) \Phi^{(2)}(z) = M [\bar{z} \Phi^{(2)}(z)] e^{2i\theta},
\]

\[
\left(A_0^{(2)} + \cdots + \frac{1}{z^5 z^4} \right) e^{2i\theta} = \left(B_0^{(2)} + \cdots + \frac{1}{z^4 z^4} \right), \quad r = r_0 - b_0.
\] \hspace{1cm} (2.40)

(2.40) is an equation of the form

\[
\sum_{n=0}^{\infty} M \frac{1 + n}{r_0^n} a_n^{(2)} e^{-in\theta} + (A - \lambda S A^*) \sum_{n=0}^{\infty} \frac{a_n^{(2)}}{r_0^n} e^{-in\theta} = M b_0^{(2)} e^{2i\theta} - M \sum_{n=0}^{\infty} \frac{b_n^{(2)}}{r_0^n} e^{-in\theta} =
\]

\[
= C_0^{(2)} e^{2i\theta} + C_4^{(2)} e^{4i\theta} = C_2^{(2)} e^{-2i\theta} + C_{-2}^{(2)} e^{-4i\theta},
\] \hspace{1cm} (2.41)

where the coefficients are defined as

\[
C_0^{(2)} = \frac{1}{r_0} A_1^{(2)} + \frac{1}{r_0^2} (A_2^{(2)} - B_2^{(2)}) + \frac{1}{r_0^3} (A_3^{(2)} - B_3^{(2)}) + \frac{1}{r_0^4} (A_4^{(2)} - B_4^{(2)}) - B_0^{(2)}
\]

\[
C_2^{(2)} = A_0^{(2)} - \frac{1}{r_0} B_2^{(2)} + \frac{1}{r_0^2} (A_2^{(2)} - B_2^{(2)}) + \frac{1}{r_0^3} (A_3^{(2)} - B_3^{(2)}) - A_1^{(2)}
\]

\[
C_4^{(2)} = \frac{1}{r_0} (A_2^{(2)} - B_2^{(2)}) - \frac{1}{r_0^2} B_2^{(2)}
\]

\[
C_{-2} = \frac{1}{r_0} (A_2^{(2)} - B_2^{(2)}) + \frac{1}{r_0^2} (A_3^{(2)} - B_3^{(2)}) + \frac{1}{r_0^3} (A_4^{(2)} - B_4^{(2)})
\]

\[
C_{-4} = \frac{1}{r_0} (A_3^{(2)} - B_3^{(2)}) + \frac{1}{r_0^2} (A_4^{(2)} - B_4^{(2)}) + \frac{1}{r_0^3} A_1^{(2)}.
\]
\[e^{i\theta} \text{-ის კონტრაბუნქათი ჯამი თუ გამჭვირვალობა 0-ს და გამჭვირვალობამდენ გადაადგილდება ცვლილებაში, მიერთან}
\[a_1^{(2)} = b_1^{(2)} = 0. \]

გამოყენებით ზეხა მე-2\(e^{2i\theta} \)-ის კონტრაბუნქათი ჯამი, რომელიც
\[\frac{1}{r_0^2} (A - \lambda_5 SA^*) a_2^{(2)} - M b_0^{(2)} = C_2^{(2)}. \]

ტანილი იქნა, რომ \(a_2^{(2)} \) სადაც გამრჯელდება. (2.39)-დან \(b_0^{(2)} \)-ს სწორედ რომ ხარა ქვეითქულ ქონდილით \(a_2^{(2)} \)-ს ობობრება
\[a_2^{(2)} = r_0^2 (A - \lambda_5 SA^*)^{-1} \left(C_2^{(2)} - \frac{1}{2} A_0^{(2)} \right). \]

\(e^{3i\theta} \)-ის კონტრაბუნქათი ჯამი ნიდში ადგილობით უკანასკნელი
\[a_3^{(2)} = 0. \]

\(e^{4i\theta} \)-ის კონტრაბუნქათის გარემოს სწორედ გურიალულ ქონდილით \(a_4^{(2)} \)-ს ობობრება
\[a_4^{(2)} = r_0^4 (A - \lambda_5 SA^*)^{-1} C_4^{(2)}. \]

\(a_n^{(2)}, \quad n \geq 5 \) კონტრაბუნქათისათვის ან გამოხატება
\[a_n^{(2)} = 0, \quad n \geq 5. \]

(2.41) წინადადობის შესაფერით მარიში თავისუფალ ქონდილით ჯამი გამჭვირვალობთ \(C_0^{(2)} - \) და გამჭვირვალობამდე (2.39) მნიშვნელობით, \(b_2^{(2)} \)-საგან მიჩნევა
\[b_2^{(2)} = -r_0^2 M^{-1} \left(\frac{1}{2} B_2^{(2)} + C_0^{(2)} \right). \]

ნარჩენიდან გამომაგდებაგან გაქვთ \(b_4^{(2)} \) და \(b_6^{(2)} \) კონტრაბუნქათი
\[b_4^{(2)} = -r_0^4 \left[3(A - \lambda_5 SA^*)^{-1} \left(\frac{1}{2} A_0^{(2)} - C_2^{(2)} \right) + M^{-1} C_2^{(2)} \right], \]
\[b_6^{(2)} = r_0^6 \left[5(A - \lambda_5 SA^*)^{-1} C_4^{(2)} - M^{-1} C_2^{(2)} \right]. \]

ამით, გამომგება ფიზიკური ქონდილი \(\Phi^{(2)}(z) \) და \(\Psi^{(2)}(z) \) ფუნქციები
\[\Phi^{(2)}(z) = a_0^{(2)} + \frac{a_2^{(2)}}{z^2} + \frac{a_4^{(2)}}{z^4}, \quad \Psi^{(2)}(z) = b_0^{(2)} + \frac{b_2^{(2)}}{z^2} + \frac{b_4^{(2)}}{z^4} + \frac{b_6^{(2)}}{z^6}. \]

შე მეჯამა, მაგ \(\Phi^{(2)}(z) \) და \(\Psi^{(2)}(z) \) ფუნქციები ნამუთხარი, გადაადგილდება ქონდილით და შეიძლება შემავალი კარგადაწყვეული შეთქმის მინიმალურმა ფუნქციებს დამოკიდებულად შეთქმული ამათ.
\[\tau_{rr}^{(2)} + \tau_{\theta\theta}^{(2)} = \frac{1}{r^4} (B_0^{(2)} + \frac{1}{r^2} B_{12}^{(2)} + \frac{1}{r^4} B_{13}^{(2)}) + \frac{1}{r^2} (4(\Lambda + M)B^{-1}Aa_2^{(2)} + B_1^{(2)} + B_2^{(2)} + B_3^{(2)} + B_4^{(2)} + B_5^{(2)} + B_6^{(2)}) \cos^2 \theta + \frac{1}{r^2} (B_3^{(2)} + B_4^{(2)}) \cos^2 \theta, \]

\[\tau_{r\theta}^{(2)} - \tau_{r\theta}^{(2)} = -\left\{ \frac{4\lambda_5SB^{-1}(A + B)a_3^{(2)} + \frac{1}{r^2} (B_1^{(2)} - B_2^{(2)}) + \frac{1}{r^4} (B_1^{(2)} - B_2^{(2)}) + \frac{1}{r^6} (B_{10}^{(2)} - B_{11}^{(2)}) \sin^2 \theta + \frac{4\lambda_5SB^{-1}(A + B)a_4^{(2)} + \frac{1}{r^2} (B_3^{(2)} - B_4^{(2)}) + \frac{1}{r^4} (B_3^{(2)} - B_4^{(2)}) \sin^2 \theta \right\}. \]

\[U_i = \varepsilon U_i^{(1)} + \varepsilon^2 U_i^{(2)}, \quad \tau_{ij} = \varepsilon \tau_{ij}^{(1)} + \varepsilon^2 \tau_{ij}^{(2)}. \]

\[P_{r3} = 0 \quad r = r_0 - \varepsilon. \quad (2.42) \]

\[\bar{G}(z)e^{-i\theta} + G(z)e^{i\theta} = \frac{r_0}{2R} \left\{ M^{-1} - (A^{-1}\hat{A} - I)(\Lambda + M)^{-1} + \right. \]

\[+ [M^{-1} + (I + A^*)(A - \lambda_5SA^*)^{-1}] \cos^2 \theta - (A - \lambda_5SA^*)^{-1} \cos^2 \theta \} p, \quad \text{for} \quad \bar{r} = r_0. \]

\[\bar{G}(z)P_{r3} = \sum_{n=0}^{\infty} \frac{c_n}{r^n} e^{-in\theta}. \]

\[c_1 = \frac{r_0^2}{4R} [M^{-1} + (A^{-1}\hat{A} - I)(\Lambda + M)^{-1}]p, \quad c_3 = \frac{r_0^4}{4R} [M^{-1} + (A^* + I)(A - \lambda_5SA^*)]p, \quad (2.43) \]

\[c_5 = -\frac{r_0^6}{4R} (A - \lambda_5SA^*)^{-1}p, \quad c_0 = c_2 = c_4 = \ldots = 0. \]
$G(z) = \frac{c_1}{z} + \frac{c_3}{z^3} + \frac{c_5}{z^5},$

საფუძვლად იქნება შერთება გვხვდება

$g(z) = c_1 \ln z - \frac{1}{2} \frac{c_3}{z^2} - \frac{1}{4} \frac{c_5}{z^4}.$

(1.12) ფუნქციის თანსახის გვიანა

$$P_{r_3} = \frac{1}{2R} \left\{ 2\frac{r_a}{r} (\tilde{b} + \tilde{c}) a_0 + 2\frac{r}{r_a} A a_0 - \frac{2}{r_a} A \left[\frac{1}{3} b_4 - \frac{2}{r_a} c_5 \right] \cos 2\theta - \frac{2}{r_a} A \left[\frac{1}{3} b_4 - \frac{2}{r_a} c_5 \right] \cos 4\theta \right\}.$$ (2.44)

პირველი პროფილის (1.8) ფუნქციის სრული ვალნეტი

$$P_{3r} = (B - \Lambda) A^{-1} P_{r_3},$$

ამიტომ (2.42)-ის თანსახის $P_{3r} = 0$ ლენშიტი. მოხდება (2.44) ფუნქციის სრული

$$P_{r_3} \rightarrow \infty, \quad r \rightarrow \infty,$$

P_{r_3} სივრცობს ფუნქციური როლს ტროპიკული ზომის სივრცობს, ხოლო $R \gg r_0$, აღნიშნავს ტროპიკული ზომის შეჯიბრით დაფარდა. P_{r_3} სივრცობს მხოლოდია საგანო დახმარება უფრო საერთო ლოგით შემდეგ შემდეგი ლიმიტით ქმნიდა.

წინა პროფილის (1.4) ფუნქციის პროფილით პირველი პროფილის გადაამუშავების გადადიდების U_3 კომ-

$U_3 = \text{Re} \left\{ \frac{1}{2R} A^{-1} \tilde{A} B^{-1} \tilde{A} \tilde{z} + g(z) \right\} = \frac{1}{2R} A^{-1} \tilde{A} B^{-1} A(a_0 r^2 - a_2 \cos 2\theta) + c_1 \ln r - \frac{1}{2r^2} c_3 \cos 2\theta - \frac{1}{4r^4} c_5 \cos 4\theta,$

სადაც a_0, a_2, c_1, c_3, c_5 სრულიან გამოთქვევით გამოთქვევით ზომის შემასრულ (2.6), (2.8) და (2.43) ფუნქციების სივრცეთით.

§3. ტროპიკული არხ გადახდის შესახებ

აღქრული დროის ჩატარებისთვის ტროპიკული არხის გადახდის სივრცის შემდეგ ტრო-

$z = \omega(\zeta) = R \left(\zeta + \frac{m}{\zeta} \right) \quad (R > 0, \quad 0 \leq m \leq 1).$ (3.1)
\[
| \zeta | = 1 \text{ წარმოქმნის (\(\gamma \) კონსტანტა) გამოსახულება ლათინური გრამატიკით სითხეში, ქონი და ხარჯულადობრივთან}
\]
\[
a = R(1 + m), \quad b = R(1 - m).
\]
\[
\text{ხოლო } m = 0, \text{ იმავე გამოხვრევა გადატვირთავს წყლით.
} \]
\[
m = 1 \text{ გამოხვრევა გადატვირთავს წყლით, ხოლო } x_1 = \pm 2R \text{ მონაკვეთში შეიმჩნევა 4R სიმხრეით.
} \]
\[
\text{გარედარებით, ხელს უწყობა მექანიკური ფიზიკალური ნიშნავს რით შეიძლება, რომ სიმეტრიული თავგარეშენი გარედარება მართავს.
} \]
\[
\text{ქართულად} \quad \text{დახვდო შეგიძლია შესწავლოთ შიგნული მიხედვით.
} \]
\[
P_{\rho \rho} - i P_{\rho \theta} = 0, \quad P_{\rho \theta} = 0, \quad \text{ხოლო } \rho = 1,
\]
\[
P_{11}^\infty = p\cos^2 \alpha, \quad P_{22}^\infty = p\sin^2 \alpha, \quad P_{12}^\infty = P_{21}^\infty = p\sin \alpha \cos \alpha.
\]
\[
(3.2)
\]
\[
\text{გადახვდა წყვილი გამოხვრევა გარედარება შიგნული მიხედვით. (3.1) ფორმულებს თავსახორცს სასწავლებად გამოკვლევით.
} \]
\[
(3.1) - ს მოთხოვნა
\]
\[
\frac{\omega(\sigma)}{\overline{\omega}(\sigma)} = \frac{1}{\sigma} \left(\frac{\sigma^2 + m}{\sigma^2 - m} \right), \quad \frac{\overline{\omega}(\sigma)}{\overline{\omega}(\sigma)} = \frac{1}{\sigma} \left(\frac{1 + m\sigma^2}{\sigma^2 - m} \right)
\]
\[
\text{გადახვდა წყვილი გამოხვრევა გარედარება შიგნული მიხედვით. (3.1) ფორმულებს თავსახორცს სასწავლებად გამოკვლევით.
} \]
\[
(3.3)
\]
\[
(A - \lambda S A^*) \varphi(\sigma) + M \left(\frac{1}{\sigma} \left(\frac{\sigma^2 + m}{\sigma^2 - m} \right) \varphi(\overline{\sigma}) + \overline{\varphi(\sigma)} \right) = 0.
\]
\[
(3.3) - ს გადახვდა წყვილი გამოხვრევა გარედარება შიგნული მიხედვით
\]
\[
(A - \lambda S A^*) \varphi(\sigma) + M \left(\frac{1 + m\sigma^2}{\sigma^2 - m} \varphi(\overline{\sigma}) + \overline{\varphi(\sigma)} \right) = 0.
\]
\[
(1.20) \text{ და (1.21) ფორმულების თანახმად, } \varphi(\zeta) \text{ და } \psi(\zeta) \text{ ფუნქციებს უნდა იყოს.
} \]
\[
\varphi(\zeta) = \Gamma R \zeta + \varphi_0(\zeta), \quad \psi(\zeta) = \Gamma R \zeta + \psi_0(\zeta),
\]
\[
(3.4)
\]
\[
(3.4) - ს გადახვდა წყვილი გამოხვრევა გარედარება შიგნული მიხედვით
\]
\[
\varphi_0(\infty) = \psi_0(\infty) = 0.
\]
\[
(3.5)
\]
\[
\text{შესწავლების შიგნული მიხედვით (1.23) ფორმულების თანახმად, შესწავლების (3.2) ფორმულების თანახმად,}
\]
\[
\Gamma = \frac{-1}{4} A^{-1} B (B - \lambda S)^{-1} p, \quad \Gamma' = -\frac{1}{2} M^{-1} p e^{-2i\alpha}.
\]
\[
(3.6)
\]
\[
(3.7)
\]
განხილქვენი (3.7) გამოყენების შესასვლელში შეფართ \(f\)-ის

\[
f := -R(A - \lambda_S A^*)\Gamma\sigma - \frac{R}{\sigma} \frac{\sigma^2 + m}{1 - m^2} M\Gamma - \frac{R}{\sigma} M\Gamma'.
\]

თუ გამოყენოთ (3.5) ფორმულა, შემდეგ

\[
\frac{1}{2\pi i} \int_{\gamma} \frac{\varphi_0(\sigma)d\sigma}{\sigma - \zeta} = -\varphi_0(\zeta) + \varphi_0(\infty) = -\varphi_0(\zeta).
\]

მაგალითით \(\frac{1}{\sigma} \frac{\sigma^2 + m}{1 - m^2} \varphi'(\sigma)\) ფუნქციას შეფართად რატიონალური და ნახტომური ფუნქციებით შეფართა ფუნქცია მაგალითით (3.6) გამოყენებით.

\[
\varphi_0'\left(\frac{1}{\zeta}\right) = -a_1\zeta^2 - 2a_2\zeta^3 - \cdots, \quad \text{თუ } |\zeta| < 1,
\]

პირველად (3.7)-ის ფორმულა

\[
\varphi_0(\zeta) = -\frac{1}{2\pi i} (A - \lambda_S A^*)^{-1} \int_{\gamma} \frac{f d\sigma}{\sigma - \zeta}.
\] (3.8)

(3.7) გამოყენების შესასვლელში სილოთი სტრუქტურად გამოყვანილი ჰომოგენი განხილქვენი \(\psi_0(\sigma)\) და თქვენი აქ შემთხვევა გამოვითა

\[
\psi_0(\zeta) = -\frac{1}{2\pi i} \int_{\gamma} \frac{\psi_0(\sigma)d\sigma}{\sigma - \zeta},
\]

თუ გამოყენოთ (3.5) ფორმულა, რაც

\[
\frac{1}{2\pi i} \int_{\gamma} \frac{\varphi_0(\sigma)d\sigma}{\sigma - \zeta} = 0, \quad \frac{1}{2\pi i} \int_{\gamma} \frac{\sigma 1 + m\sigma^2}{\sigma^2 - m} \varphi'_0(\sigma) d\sigma = -\zeta \frac{1 + m\zeta^2}{\zeta^2 - m} \varphi'_0(\zeta),
\]

უკავშირებით შეფართა ფორმულათა

\[
\psi_0(\zeta) = -\frac{M^{-1}}{2\pi i} \int_{\gamma} \frac{f d\sigma}{\sigma - \zeta} - \zeta \frac{1 + m\zeta^2}{\zeta^2 - m} \varphi'_0(\zeta).
\] (3.9)

სახიფათოდ შევხვდეთ ფორმულები

\[
\frac{1}{2\pi i} \int_{\gamma} \frac{\sigma d\sigma}{\sigma - \zeta} = 0, \quad \frac{1}{2\pi i} \int_{\gamma} \frac{d\sigma}{\sigma(\sigma - \zeta)} = -\frac{1}{\zeta},
\]

\[
\frac{1}{2\pi i} \int_{\gamma} \frac{\sigma^2 + m}{\sigma(1 - m^2)\sigma - \zeta} d\sigma = \frac{(1 + m^2)\zeta}{\zeta^2 - m}.
\]
\[\varphi(\zeta) = \frac{1}{4\zeta} R(A - \lambda_5 S A^*)^{-1} M (2M^{-1} e^{2i\alpha} - mA^{-1} B (B - \lambda_5 S)^{-1}) \rho. \]

(3.8) The expression for \(\psi(\zeta) \) is obtained by substituting \(\varphi(\zeta) \) into the solution:

\[\psi(\zeta) = -\frac{R_0}{4} \left\{ \left(M^{-1} (A - \lambda_5 S A^*) \frac{1}{\zeta} + \frac{(1 + m^2)\zeta}{\zeta^2 - m} \right) A^{-1} B (B - \lambda_5 S)^{-1} - \frac{1 + m\zeta^2}{\zeta^2 - m} (A - \lambda_5 S A^*)^{-1} M [2M^{-1} e^{2i\alpha} - mA^{-1} B (B - \lambda_5 S)^{-1}] \right\} \rho. \]

Similarly, \(\varphi(\zeta) \) and \(\psi(\zeta) \) for the problem (3.4) and (3.6) are obtained by taking the derivative:

\[\varphi(\zeta) = \frac{R}{4} \left\{ A^{-1} B (B - \lambda_5 S)^{-1} \frac{1}{\zeta} + \frac{(A - \lambda_5 S A^*)^{-1} M [2M^{-1} e^{2i\alpha} - mA^{-1} B (B - \lambda_5 S)^{-1}] \right\} \rho. \]

\[\psi(\zeta) = -\frac{R}{4} \left\{ 2M^{-1} e^{-2i\alpha} \zeta + \left(M^{-1} (A - \lambda_5 S A^*) \frac{1}{\zeta} + \frac{(1 + m^2)\zeta}{\zeta^2 - m} \right) A^{-1} B (B - \lambda_5 S)^{-1} - \frac{1 + m\zeta^2}{\zeta^2 - m} (A - \lambda_5 S A^*)^{-1} M [2M^{-1} e^{2i\alpha} - mA^{-1} B (B - \lambda_5 S)^{-1}] \right\} \rho. \]

Finally, for the problem (3.4) and (3.6), we obtain:

\[P_{\rho\rho} + P_{\theta\theta} = 4(B - \lambda_5 S) B^{-1} A R e \Phi(\zeta), \quad P_{\rho\theta} - P_{\theta\rho} = -4 \lambda_5 S B^{-1} (A + B) I m \Phi(\zeta). \]

(3.10)

\[4 \Phi(\zeta) \text{-tensor is defined by the equation:} \]

\[4 \Phi(\zeta) = \frac{4e_1(\zeta)}{\omega'(\zeta)} = \frac{A^{-1} B (B - \lambda_5 S)^{-1} \zeta + (A - \lambda_5 S A^*)^{-1} M [M A^{-1} B (B - \lambda_5 S)^{-1} - 2M^{-1} e^{2i\alpha}] \rho =} \]

\[\left\{ A^{-1} B (B - \lambda_5 S)^{-1} \rho^2 e^{2i\theta} \zeta + (A - \lambda_5 S A^*)^{-1} M [M A^{-1} B (B - \lambda_5 S)^{-1} - 2M^{-1} e^{2i\alpha}] \right\} \frac{\rho^2 e^{-2i\theta} - m}{(\rho^2 e^{-2i\theta} - m)(\rho^2 e^{-2i\theta} - m)}. \]

(3.11)

For the problem (3.4) and (3.6), we further consider the following:

\[P_{\rho\rho} + P_{\theta\theta} = \left\{ \rho^4 I - \rho^2 A_0 cos(2(\theta - \alpha)) + m(\rho^2 (A_0 B_0 - I) cos2\theta - \rho^2 A_0 B_0 + +m A_0 cos2\alpha) p(\rho^4 - 2m^2 cos2\theta + m^2)^{-1}, \right\} \]

(3.12)

where \(A_0 \) and \(B_0 \) are defined by the equations:

\[A_0 := I + M (A - \lambda_5 S A^*)^{-1}, \quad B_0 := M (A - \lambda_5 S A^* + M)^{-1}. \]

(3.11)

For the problem (3.4) and (3.6), we further consider the following:

\[P_{\rho\theta} - P_{\theta\rho} = -\left\{ \rho^2 C_0 sin2(\alpha - \theta) + m(\rho^2 (C_0 B_0 + D_0) sin2\theta - m C_0 sin2\alpha) p \times \times (\rho^4 - 2m^2 cos2\theta + m^2)^{-1}, \right\} \]

(3.13)
$C_0 := I - M(A - \lambda_5 S A^*)^{-1}$, $D_0 := -\lambda_5 S(I + A^*)(A - \lambda_5 S A^* + M)^{-1}$.

თუ $\lambda_5 = 0$, ხდომა $A_0 = 4B_0 = 2I$, $C_0 = D_0 = 0$, $A_0B_0 = I$ და $P_{\rho p} = P_{\rho \theta}$, $P''_{\rho p} = P''_{\rho \theta}$ კონსტანტაზემოთ ხდომათ, თუმცა ისე კონსტანტა ნეგატიური ჭრებაში დარქვის. (3.13)-ს კონსტანტა $P_{\rho \theta} = P_{\rho \theta}$.

სეგმენტში ჭრა იქმნება $p = 1$, $P_{\rho \theta} = P_{\rho \theta} = 0$. ამჟამად (3.12) და (3.13) თეორემებიდან მოხდება

$$P_{\rho \theta} = \left\{ I - m^2A_0B_0 + m(A_0B_0 - I)\cos2\theta - A_0\cos2(\theta - \alpha) \right\} \times p(1 - 2m\cos2\theta + m^2)^{-1}, \quad (3.14)$$

$$P_{\rho \rho} = \left\{ C_0\sin2(\alpha - \theta) + m(C_0B_0 + D_0)\sin2\theta - mC_0\sin2\alpha \right\} p(1 - 2m\cos2\theta + m^2)^{-1}. \quad (3.15)$$

თუ იკეთებთავი თეორემით, მაშინ მაშინაას ჰარმონიულება, მოხდება ქრონიული მისიმაგრენათ წინამორბილი მისიმაგრელი ჭრის ფორმულებთან თუ გამოსახული აქვს Ox_1 გრანის გამოყენება. მ.თ. $\alpha = 0$, ამჟამად (3.14) და (3.15) თეორემებიდან გამოდის

$$P_{\rho \theta} = \left\{ I - m^2A_0B_0 - [A_0 + m(I - A_0B_0)]\cos2\theta \right\} p(1 - 2m\cos2\theta + m^2)^{-1}, \quad (3.16)$$

$$P_{\rho \rho} = \left\{ -C_0 + m(C_0B_0 + D_0)\sin2\theta \right\} p(1 - 2m\cos2\theta + m^2)^{-1}. \quad (3.17)$$

რაც მ.თ. $\theta = \pm \frac{\pi}{2}$, ამჟამად (3.16)-დან $P_{\rho \theta}$-ის ჰარმონიულება ჭრა იქმავს ნეგატიური ჭრის ფორმულა

$$P_{\rho \theta} = \frac{(I - mA_0B_0 + A_0)p}{m + 1}.$$

თუ ხარჯით, ხდომა $\lambda_5 = 0$ და $P_{\rho \theta}$, p სამართალი მაგრელლო, განათლებული მაგრელები აქვს ψ გრანის გამოყენება

$$m = \frac{1 - k}{1 + k}, \quad k = \frac{b}{a},$$

სადაც a, b ლაგავის ხარჯარგვა, მართ ჭრის ფორმულა

$$P_{\rho \theta} = p\left(1 + 2\frac{b}{a}\right),$$

რაც იკეთებთ ჰარმონიული თვითარი პირობაში შესაძლო შეფასებაში შედეგად.

ხარჯარგვ მაგრელი $\theta = 0$-ზე (3.16)-დან ჰარმონიულება $P_{\rho \theta}$-ის ჰარმონიული შედეგად

$$P_{\rho \theta} = \frac{(-I + A_0 - mA_0B_0)p}{m - 1}.$$

თუ $\lambda_5 = 0$, მართ ჭრა $P_{\rho \theta} = -p$, რაც მაშინ ჰარმონიული თვითარი პირობაში შედეგად.

თუ $m = 0$, მართ ჭრა ρ ფიზიკო-ზომიერობის მხრივ და (3.16) და (3.17) თეორემებში მოხდება შესაძლო (2.17) და (2.16) თეორემები.
\(m = 1 \) სადლური ღირსიანები იცავს ზუარულობით ან პირობების საშიშრო ზუარულობა, ანუ შიშება. ასე ზუარულები ერთი წყლის ზუარულობარენი დროს ხასიათი ლათქვამ მიერ (3.18)

\[
P_{11} = -P\cos(l, x_1), \quad P_{12} = -P\cos(l, x_2) \quad \text{წრიულები,}
\]
\[
P_{11} = P_{22} = P_{12} = P_{21} = 0,
\]

სადაც \(P = (P', P'')^T \) წრიულები მასწავლებლი წრიულები გამოყოფს. გამოვიყენებთ
\[
(P_{11} + iP_{12})ds = -P(dx_2 - idx_1) = Pdz.
\]

ინტეგრალი ღირსიანია

\[
f = i \int (P_{11} + iP_{12})ds = -Pz = -PR\left(\frac{\sigma + m}{\sigma}\right),
\]
\[
\tilde{f} = -PR\left(\frac{1}{\sigma} + m\sigma\right).
\]

\(\varphi(\zeta) \) და \(\psi(\zeta) \) ფუნქციებისთვის საშიშრო ზუარულობი (3.8) და (3.9) დგინებები. თუ იმისათვის მისი \(f \) და \(\tilde{f} \) სოლიდური ზუარულობა დროს ხასიათი, გამოვიყენებთ
\[
\varphi(\zeta) = -\frac{Rm}{\zeta}(A - \lambda_5SA^*)^{-1}P,
\]
\[
\psi(\zeta) = -\frac{R}{\zeta}M^{-1}P - \frac{Rm(1 + mc^2)}{\zeta(\zeta^2 - m)}(A - \lambda_5SA^*)^{-1}P.
\]

მაგრამ მათი გადაკაზრების მიზნით გამოთვლამ მისაღწევი მაგრამ მისაღწევი სპექტრალური ზუარულობა, იმით რომ შეადგენეთ ტოპოლოგიური ან პირობების სრულყოფა, ანუ შიშება.

შეფასებით პრიზმატის მასპინძლობით გამოვიყენებთ
\[
\Phi(\zeta) = \frac{1}{\zeta^2 - 1}(A - \lambda_5SA^*)^{-1}P = \frac{1}{\rho^2e^{2i\theta} - 1}(A - \lambda_5SA^*)^{-1}P.
\]

\(\omega'(\zeta)\Psi(\zeta) = \psi'(\zeta) = \frac{R(\zeta^2 - 1)^2M^{-1}(A - \lambda_5SA^*) + R(\zeta^2 + 4\zeta^2 - 1)I(A - \lambda_5SA^*)^{-1}P =}
\]
\[
= \frac{R(\rho^2e^{2i\theta} - 1)^2M^{-1}(A - \lambda_5SA^*) + R(\rho^2e^{2i\theta} - 4\rho^2e^{2i\theta} - 1)(A - \lambda_5SA^*)^{-1}P.}
\]

პრინციპით მიიღებთ 1.28 დროს ზუარულობი (3.19) და დაგები (3.20) მაგრამ გადაკაზრების შემთხვევა
\[
P_{\rho\theta} + P_{\theta\rho} + i(P_{\rho\theta} - P_{\theta\rho}) = 2\frac{\rho^2cos2\theta A_0 - A_0 - ip^2sin2\theta C_0}{\rho^4 - 2\rho^2cos2\theta + 1} \quad P =
\]
\[
= 2\left\{-i + \frac{\rho^4 - cos2\theta}{\rho^4 - 2\rho^2cos2\theta + 1} - \frac{i}{\rho^4 - 2\rho^2cos2\theta + 1}\right\} P.
\]
(127) ფრიქტოტოლის თანახმად ო (3.20)-ის თაღვადსფეროზე გამოდის

\[
P_{\theta \theta} - P_{\rho \rho} + i(P_{\rho \theta} + P_{\theta \rho}) = 2(\rho^4 - 2\rho^2 \cos2\theta + 1)^{-1} \left\{ \rho^2(2C_0 - 2M(A - \lambda_5 S A^*)^{-1} + \rho^4 A_0) +
+ \cos2\theta[-3\rho^4 C_0 + 2\rho^2(1 - \rho^4)M(A - \lambda_5 S A^*)^{-1} - C_0] + \cos4\theta C_0 + i[\sin2\theta \left(-2\rho^4(1 - \rho^4)\times
\times M(A - \lambda_5 S A^*)^{-1} + \rho^4(2C_0 - A_0) + 2\rho^2M(A - \lambda_5 S A^*)^{-1} + C_0) - \rho^2 \sin4\theta C_0]\right\} P.
\]
(3.22)

გადაფესვების გამოყვანათან დახმარებით (130) ფრიქტოტოლის სახელმწიფო

\[
U_\rho = -\frac{R}{2\rho} (\rho^4 - 2\rho^2 \cos2\theta + 1)^{-\frac{1}{2}} \left\{ \cos2\theta[\rho^2(I + A^*) - C_0] + I - A^* + \rho^2 A_0\right\} (A - \lambda_5 S A^*)^{-1} P,
\]
\[
U_\theta = -\frac{R\rho}{2} (\rho^4 - 2\rho^2 \cos2\theta + 1)^{-\frac{1}{2}} \left\{ \sin2\theta[I - A^* - \rho^2 C_0]\right\} (A - \lambda_5 S A^*)^{-1} P.
\]
(3.21) და (3.22)-ის გამოყოფა

\[
P_{\rho \rho} = -P + (\rho^4 - 2\rho^2 \cos2\theta + 1)^{-1} \left\{ (\rho^2 - 1)^3(\rho^2 + 1)I + (\rho^2 - 1)(\rho^4 + 2\rho^2 - 2)C_0 -
- \cos2\theta(\rho^2 - 1)(3\rho^4 + 1)C_0 + 2\cos^2\theta(\rho^2 - 1)C_0\right\} P,
\]
(3.23)

\[
P_{\theta \theta} = -P + (\rho^4 - 2\rho^2 \cos2\theta + 1)^{-1} \left\{ (\rho^4 - 1)(1 + 2\rho^2 + \rho^4 - 4\rho^2 \cos2\theta)I +
+ \rho^2(-\rho^4 + \rho^2 + 4)C_0 + \cos2\theta[3\rho^2(\rho^2 - 1) - 3\rho^4 - 1]C_0 + 2\cos^2\theta(\rho^2 + 1)C_0\right\} P,
\]
(3.24)

\[
P_{\rho \theta} = (\rho^4 - 2\rho^2 \cos2\theta + 1)^{-2} \left\{ \sin2\theta[2\rho^2(\rho^2 - 1)^2I - (\rho^2 - 1)(3\rho^4 - 2\rho^2 + 1)C_0] +
+ \sin4\theta \rho^2(\rho^2 - 1)C_0\right\} P,
\]
(3.25)

\[
P_{\theta \rho} = (\rho^4 - 2\rho^2 \cos2\theta + 1)^{-2} \left\{ \sin2\theta[2\rho^2(\rho^2 - 1)^2I - (\rho^2 - 1)(3\rho^4 - 2\rho^2 + 1)C_0] -
- \sin4\theta \rho^2(\rho^2 + 1)C_0\right\} P.
\]
(3.26)

(3.23)-(3.26) დროხელმცირებლის გამოყვანათან დახმარებით P_{11}, P_{22}, P_{12} და P_{21} დამოუკიდებელად

\[
P_{11} = P_{\rho \rho}, \quad P_{12} = P_{\rho \theta}, \quad P_{21} = P_{\theta \rho},
\]
\[
P_{22} = P_{\theta \theta},
\]
\[
P_{12} = P_{21} = 0.
\]

ამოცანა 3. თავშემოთავისუფალი ტრამვაი, როგორც თრეკის ყოველწლიურ მოძრივობით თანახმად ტრანზისტორთან ტრანზისტორთa ნაწილი

\[
P_{11} + iP_{12}ds = Tdz,
\]
\[
f = iTz = iTR\left(\sigma + \frac{m}{\sigma}\right), \quad \bar{f} = -iT\left(m\sigma + \frac{1}{\sigma}\right).
\]
34. ფუნქციული არჩევისაუდგეთი სტრუქტურა

თუ გარდაქმნი მანქანათა დონეზე (3.18) პრობლემა, ხდება ტ(ζ) და ψ(ζ) ფუნქციების განსახოვრები წინა გამოყენებულ განყოფილებებზე.

\[\varphi(\zeta) = \frac{Rm_i}{\zeta}(A - \lambda_S A^*)^{-1} \Gamma , \]
\[\psi(\zeta) = -\frac{Ri}{\zeta} M^{-1} \Gamma + \frac{Rm_i}{\zeta} \left[1 + m \zeta^2 \right] (A - \lambda_S A^*)^{-1} \Gamma . \]

ამით შესაძლებელია და შესაძლოვანია, რომ პრობლემა ერთი ჯილდო (127), (128) და (130) გამოყენებით სამუშაოდ. თუ მას გადაჰყავთ მანქანათა დონეზე, (129), ნ. 64-70

\[\omega(\zeta) = R \left(\frac{1}{\zeta} - \frac{1}{6\zeta^3} \right) , \quad (4.1) \]

მოკლებით შე-2 ხაზები გამოსახული კრიტერიულ, რომლის გარემოთმცოდნის მისაღებად (4.1)-ში ქმნის გამოთავაზები ნამდგომი და წინამართალობი სკულპტური, როგორც ρ = 1 (ζ = ρe^{iθ})

\[x_1 = R(\cosθ - \frac{1}{6}\cos3θ) , \]
\[x_2 = -R(\sinθ + \frac{1}{6}\sin3θ) . \]

ამით ფუნქციული არჩევის სტრუქტური სენომრით გაგრძელების გრაფიკილობა ქმნის.

განსახიერებელად შეიმცირებული წინა პარაგარაფის შესაძლოდ გაგრძელება 3.2 სამუშაოდ პრობლემით.

(4.1) განყოფილება

\[\frac{\omega(\sigma)}{\omega'(\sigma)} = \frac{1}{6\sigma} - \frac{13\sigma}{6(2\sigma^4 + 1)} , \]
\[\frac{\omega'(\sigma)}{\omega''(\sigma)} = \frac{1}{6\sigma} - \frac{13\sigma^3}{6(2 + \sigma^4)} \]

და რადგან კონტრაქტი თავსახელით გადატანილ მინიმუმზე, (1.31) განყოფილება ჰქონა განყოფილ უკეთეშე სამუშაო პრობლემა.

\[(A - \lambda_S A^*)\varphi(\zeta) + M \left[\left(\frac{\sigma}{6} - \frac{13\sigma}{6(2\sigma^4 + 1)} \right) \varphi'(\sigma) + \psi(\sigma) \right] = 0 , \quad (4.2) \]

საიმპ ტ(ζ) = (τ(ζ), ψ(ζ))T, ψ(ζ) = (ψ1(ζ), ψ2(ζ))T ფუნქციებში ბეჭდით

\[\varphi(\zeta) = \frac{R_0}{\zeta} + \varphi_0(\zeta) , \]
\[\psi(\zeta) = \frac{R_1}{\zeta} + \psi_0(\zeta) , \quad (4.3) \]

120
საფუძვლად \(\varphi_0(\zeta) = (\varphi_0(\zeta), \varphi_2(\zeta))^T \) და \(\psi_0(\zeta) = (\psi_0(\zeta), \psi_2(\zeta))^T \) - ბუდის ქვემოთ პოლონ-მორხილული ფუნქციები. თუ მიენახათ

\[
\varphi_0(\infty) = \psi_0(\infty) = 0.
\]

\(\Gamma \) და \(\Gamma' \) სოლოდირიბრივი ყოველგან ვარ შემდეგ რიგის საზოგადოება (3.6) ფორმულებით. რამდენიმე რიგი (4.2) სამულიკო შეფარდებით, მოიცავთ

\[
(A - \lambda_5 S A^*) \varphi_0(\sigma) + M \left[\left(\frac{\sigma}{6} - \frac{13\sigma}{6(2\sigma^4 + 1)} \right) \varphi'_0(\sigma) + \varphi_0(\sigma) \right] = 0
\]

\[
= -R(A - \lambda_5 S A^*) \Gamma^1 + R \left(\frac{\xi}{6} - \frac{13\xi}{6(2\sigma^4 + 1)} \right) M \Gamma^2 - R M \Gamma' \sigma.
\]

თუ გათხრობილია, რომ

\[
\varphi_0(\zeta) = a_1 \zeta + a_2 \zeta^2 + \cdots; \quad \psi_0(\zeta) = b_1 \zeta + b_2 \zeta^2 + \cdots
\]

და

\[
\frac{1}{2\pi i} \int_{\gamma} \left[\frac{\sigma}{6} - \frac{13\sigma}{6(2\sigma^4 + 1)} \right] \left(\frac{\bar{a}_1}{\sigma} + \frac{2\bar{a}_2}{\sigma^2} + \frac{3\bar{a}_3}{\sigma^3} + \cdots \right) \frac{d\sigma}{\sigma - \zeta}
\]

\[
= \frac{\bar{a}_1}{6} \zeta + \frac{\bar{a}_2}{3},
\]

სადაც \(a_n = (a'_n, a''_n)^T, \quad b_n = (b'_n, b''_n)^T, \) ამის (4.4)-ის ფორმულით

\[
(A - \lambda_5 S A^*)(a_1 \zeta + a_2 \zeta^2 + \cdots) + M \left(\frac{\bar{a}_1}{6} \zeta + \frac{\bar{a}_2}{3} \right) = \frac{R}{6} M \Gamma \zeta^3 - R M \Gamma' \zeta.
\]

თუ (4.5) გათხრობილია რომელი შერევა გათხრობილი ცერტო ენა და მაგრამ ამიზეთი ჯო- გათხრობილი და გათხრობილი ცერტო (3.6) ფორმულებით, მოიცავთ

\[
a_2 = 0, \quad a_3 = \frac{R}{24} (A - \lambda_5 S A^*)^{-1} M A^{-1} B (B - \lambda_5 S)^{-1} p, \quad (A - \lambda_5 S A^*) a_1 + \frac{M}{6} \bar{a}_1 = \frac{R}{2} p e^{2i\alpha}.
\]

ჯერადინი ფორმულები ფიქსირება

\[
a_1 = \frac{R}{2} \left[\left(A - \lambda_5 S A^* + \frac{M}{6} \right)^{-1} \cos 2\alpha + i \left(A - \lambda_5 S A^* - \frac{M}{6} \right)^{-1} \sin 2\alpha \right] p.
\]

გულად ტრანსფორმილ ფორმულები ფიქსირება. ამინდვა, წინამდე

\[
\varphi_0(\zeta) = \frac{R}{2} \left\{ \left(A - \lambda_5 S A^* + \frac{M}{6} \right)^{-1} \cos 2\alpha + i \left(A - \lambda_5 S A^* - \frac{M}{6} \right)^{-1} \sin 2\alpha \right\} \zeta + \frac{1}{12} (A - \lambda_5 S A^*)^{-1} M A^{-1} B (B - \lambda_5 S)^{-1} \zeta^3 p.
\]

თუ (4.4)-ის ეკვატიონი შეაქმნილია და გათხრობილი ცერტო, რომ 13\(\sigma^3 / 6(2 + \sigma^4) \) ფორმულები საშუალო შეფარდებით, გათხრობილი (4.6) ფორმულები საშუალო შეფარდებით და ჭერილი გამო ამოგზაური ფორმულები გამოყენებით ფიქსირება ფორმულები
\[
\psi(\zeta) = -\frac{R}{4} \left\{ \left[\frac{1}{12} B^0 + M^{-1} (A - \lambda_5 S A^*) A^{-1} B (B - \lambda_5 S)^{-1} \right] \zeta + \frac{26 A^{-1} B (B - \lambda_5 S)^{-1} \zeta - 52 A^{-1} (A^*) \zeta^3 - 13 B^0 \zeta^5}{12 (2 + \zeta^4)} \right\} p,
\]

where \(A^0(\alpha) = (A - \lambda_5 S A^* + \frac{M}{6})^{-1} \cos 2\alpha + i \left(A - \lambda_5 S A^* - \frac{M}{6} \right)^{-1} \sin 2\alpha, \)

\[B^0 = (A - \lambda_5 S A^*)^{-1} M A^{-1} B (B - \lambda_5 S)^{-1}. \]

(4.3) represents the definition of \(\phi(\zeta) \) and \(\psi(\zeta) \) in the Hamiltonian system's Hamiltonian.

\[
\phi(\zeta) = \frac{R}{4} \left\{ A^{-1} B (B - \lambda_5 S)^{-1} \frac{1}{\zeta} + 2 A^0 \zeta + \frac{1}{6} B^0 \zeta^3 \right\} p,
\]

\[
\psi(\zeta) = -\frac{R}{4} \left\{ 2 M^1 e^{-2i\alpha} + \left[\frac{1}{12} B^0 + M^{-1} (A - \lambda_5 S A^*) A^{-1} B (B - \lambda_5 S)^{-1} \right] \zeta + \frac{26 A^{-1} B (B - \lambda_5 S)^{-1} \zeta - 52 A^{-1} (A^*) \zeta^3 - 13 B^0 \zeta^5}{12 (2 + \zeta^4)} \right\} p.
\]

Moreover, the \(z \) and \(\zeta \) dependence of \(\phi(\zeta) \) and \(\omega(\zeta) \) are defined in terms of \(z = e^{i\theta} \) and \(\zeta = e^{i\phi} \), with \(P_{\theta\theta} \) and \(P_{\phi\phi} \) satisfying the Hamiltonian equations of motion. The Hamiltonian functions \(P_{\phi\phi} \) and \(P_{\theta\phi} \) are given by:

\[
P_{\theta\phi} = P_{\phi\theta} = 4(B - \lambda_5 S) B^{-1} A Re \left[\frac{\phi'(\zeta)}{\omega'(\zeta)} \right],
\]

\[
P_{\phi\phi} - P_{\theta\phi} = -4 \lambda_5 S B^{-1} (A + B) Im \left[\frac{\phi'(\zeta)}{\omega'(\zeta)} \right].
\]

Furthermore, \(P_{\theta\theta} \) and \(P_{\phi\phi} \) are defined by:

\[
P_{\theta\theta} = \frac{(B - \lambda_5 S) B^{-1} A}{5 + 4 \cos 4\theta} \left\{ [4I - (A - \lambda_5 S A^*)^{-1} M] A^{-1} B (B - \lambda_5 S)^{-1} + 2[I - (A - \lambda_5 S A^*)^{-1} M] A^{-1} B (B - \lambda_5 S)^{-1} \cos 4\theta - 12 \left(A - \lambda_5 S A^* + \frac{M}{6} \right)^{-1} \cos 2\alpha \cos 2\theta + 4 \left(A - \lambda_5 S A^* - \frac{M}{6} \right)^{-1} \sin 2\alpha \sin 2\theta \right\} p,
\]

(4.4)

\[
P_{\phi\phi} = \frac{\lambda_5 S B^{-1} (A + B)}{5 + 4 \cos 4\theta} \left\{ 2[I + (A - \lambda_5 S A^*)^{-1} M] A^{-1} B (B - \lambda_5 S)^{-1} \sin 4\theta + 4 \left(A - \lambda_5 S A^* + \frac{M}{6} \right)^{-1} \cos 2\alpha \sin 2\theta + 12 \left(A - \lambda_5 S A^* - \frac{M}{6} \right)^{-1} \sin 2\alpha \cos 2\theta \right\} p.
\]

(4.5)
\[P_{\theta\theta} = \frac{(B - \lambda_S)B^{-1}A}{5 + 4\cos\theta} \left\{ 4I - (A - \lambda_S A^*)^{-1}M \right\} A^{-1}B(B - \lambda_S)^{-1} +
\quad + 2[I - (A - \lambda_S A^*)^{-1}M]A^{-1}B(B - \lambda_S)^{-1}\cos\theta -
\quad - 12 \left(A - \lambda_S A^* + \frac{M}{6} \right)^{-1} \cos\theta \} p, \]

\[P_{\theta\rho} = \frac{-\lambda_S B^{-1}(A + B)}{5 + 4\cos\theta} \left\{ 2[I + (A - \lambda_S A^*)^{-1}M]A^{-1}B(B - \lambda_S)^{-1}\sin\theta +
\quad + 4 \left(A - \lambda_S A^* + \frac{M}{6} \right)^{-1} \sin\theta \} p. \]

\[P_{\theta\rho} = \frac{(B - \lambda_S)B^{-1}A}{5 + 4\cos\theta} \left\{ 4I - (A - \lambda_S A^*)^{-1}M \right\} A^{-1}B(B - \lambda_S)^{-1}\cos\theta +
\quad + 2[I - (A - \lambda_S A^*)^{-1}M]A^{-1}B(B - \lambda_S)^{-1}\sin\theta +
\quad + 12 \left(A - \lambda_S A^* - \frac{M}{6} \right)^{-1} \sin\theta \} p. \]

\[P_{\theta\theta} = \frac{8p}{5 + 4\cos\theta} \left(\frac{3}{8} - \frac{9}{7} \cos2\alpha \cos2\theta - \frac{3}{5} \sin2\alpha \sin2\theta \right), \quad P_{\theta\rho} = P_{\rho\theta} = 0. \]
სტრუქტურული სიხშირის გამჭვირვალება არის $\alpha = \frac{\pi}{4}$ ფიქსირებული (ჩ. 5, სქ. 6). ან შეიძლება ფუნქციის სიხშირე მაგალითი შესთავაზოთ:

$U_i = 0, \quad P_{is} = 0 \quad \text{სქ.} \quad \theta = \frac{\pi}{4}, \quad \theta = \frac{5\pi}{4}, \quad 0 < \rho \leq 1, \quad l = \frac{\sqrt{2}}{2}(-1, 1), \quad s = \frac{\sqrt{2}}{2}(-1, 1), \quad U_i = 0, \quad P_{is} = 0 \quad \text{სქ.} \quad \theta = -\frac{\pi}{4}, \quad \theta = \frac{3\pi}{4}, \quad 0 < \rho \leq 1, \quad l = \frac{\sqrt{2}}{2}(-1, 1), \quad s = \frac{\sqrt{2}}{2}(1, 1).$

(4.1) სტრუქტურული სიხშირის გამჭვირვალები ქართული-ირუიგული ფიქსირებული მაგალითი გამოიყენება ფიქსირებული მაგალითი უცვლელი ფიქსირებული მაგალითი (29), გ. 19-23.

4.1. დახმარებით ქრონიკა განაჩენავს მაგალითს შეიძლება ქორეას მაგალითი შეიძლება მისაღწით მთლიანად. მათ ან ქართული ფიქსირებული მაგალითი უცვლელი ფიქსირებული მაგალითი გამოიყენა. შემდეგ ფიქსირებული ფიქსირებული მაგალითი (1-2) შეიძლება გამოაყენოთ.

$$\omega(\zeta) = R \left(\frac{1}{\zeta} - \frac{1}{6} \zeta^2 + \frac{1}{56} \zeta^4 \right).$$

55. ფუნქციური ამო ხარჯების გამომგება

არის ფუნქციური ამო სტრუქტურის გამჭვირვალების დარგი მაგალითი შეიძლება მიმდინარე მაგალითი (199), გ. 74-78

$$\omega(\zeta) = R \left(\frac{1}{\zeta} + \frac{1}{3} \zeta^2 \right). \quad (5.1)$$

5.7-7 მაგალითი ქრონიკა განაჩენა ხარჯების გამჭვირვალების შესამჩღებად.

$$x_1 = R \left(\cos \theta + \frac{1}{3} \cos 2\theta \right), \quad x_2 = -R \left(\sin \theta - \frac{1}{3} \sin 2\theta \right).$$

5. შეიძლება გამოიყენოს შემდეგი ხარჯები

$$P_{ss} - iP_{ss} = 0, \quad \rho = 1, \quad P_{ss}^\infty = \cos^2 \alpha, \quad P_{ss}^{\infty \infty} = \sin^2 \alpha, \quad P_{ss}^{\infty \infty} = P_{ss}^{\infty \infty} = \sin(\alpha \cos \alpha), \quad (5.2)$$

5.5. ქრონიკა ბაზისდის მაგალითი შერჩება, მთლიან ფუნქციური სტრუქტური შერჩება შეიძლება $p = (p_1, p_2)^T$ ბაზისზე შეიძლება, რომლისგანაც გათხრობა ფაქტი შორიდან Ox_1 გადაყვანილი მაგალითი შეიძლება.

5.5.5. შემდეგ შერჩები (1-32) სტრუქტური შეიძლება იყოს გამოყენებით.

$$\omega'(\zeta) = R \left(-\frac{1}{\zeta^2} + \frac{2}{3} \zeta \right),$$

5.5. ხარჯები სტრუქტურულ სიხშირე და (5.2)-ის ფიქსირებული შერჩება გამოიყენა შერჩები.

$$[M \Phi(\sigma) + (A - \lambda S A^*) \Phi(\sigma)] \left(\frac{1}{\sigma^2} - \frac{2}{3} \sigma \right) + \frac{1}{\sigma^2} M \left[\left(\frac{1}{\sigma} + \frac{1}{3} \sigma^2 \right) \Phi(\sigma) - \left(\sigma^2 - \frac{2}{3} \sigma \right) \Phi(\sigma) \right] = 0,$$

$$(5.3)$$

124
\[
\Phi(\zeta) = \Gamma + a_2 \zeta^2 + a_3 \zeta^3 + \cdots, \quad \Psi(\zeta) = \Gamma' + b_2 \zeta^2 + b_3 \zeta^3 + \cdots,
\]

so that
\[
\Gamma = \frac{1}{4} A^{-1} B(B - \lambda S)^{-1} p, \quad \Gamma' = -\frac{1}{2} M^{-1} p e^{-2i\alpha}.
\]

The fundamental solution follows
\[
\frac{1}{2\pi i} \int_{\gamma} \Phi(\sigma) \frac{d\sigma}{\sigma - \zeta} = \left(\frac{1}{\zeta^2} - \frac{2}{3} \right) \Phi(\zeta) - \frac{\Gamma}{\zeta^2}, \quad \frac{d}{d\sigma} \Phi(\sigma) \frac{d\sigma}{\sigma - \zeta} = -\frac{2}{3} \Gamma, \quad \frac{1}{2\pi i} \int_{\gamma} \Phi(\sigma) \frac{d\sigma}{\sigma - \zeta} = \Gamma'.
\]

(5.4) For the determinant coefficient of the solution
\[
(A - \lambda S A^*) \frac{3 - 2\zeta^3}{3\zeta^2} \Phi(\zeta) = M \Gamma^\dagger + \frac{2}{3} M \Gamma \zeta + (A - \lambda S A^*) \Gamma \frac{1}{\zeta^2},
\]

so that any fundamental \(\Phi(\zeta) \) follows
\[
\Phi(\zeta) = \frac{3\zeta^2}{3 - 2\zeta^3} \left\{ \frac{1}{4} A^{-1} B(B - \lambda S)^{-1} \frac{1}{\zeta^2} - \frac{1}{2} (A - \lambda S A^*)^{-1} e^{2i\alpha} + \frac{1}{6} (A - \lambda S A^*)^{-1} M A^{-1} B(B - \lambda S)^{-1} \right\} p.
\]

The solution of \(\Phi(\zeta) \) is determined by the formula (5.3) for every solution, so that the

\[
\frac{3 - 2\zeta^3}{3} \Psi(\zeta) = \left(\zeta^2 - \frac{2}{3} \right) \Phi(\zeta) + \left[M^{-1} (A - \lambda S A^*) \zeta^2 + \frac{2i}{3} \right] \Gamma - \frac{p}{2} e^{-2i\alpha} + \left(\zeta^3 + \frac{1}{3} \right) \Phi'(\zeta).
\]

The solution of the fundamental solution
\[
P_{\theta\theta} + P_{\theta\phi} = 4(B - \lambda S) B^{-1} A \text{Re}\{\Phi(\zeta)\}, \quad P_{\phi\phi} = P_{\theta\phi} = -4 \lambda S B^{-1} (A + B) \text{Im}\{\Phi(\zeta)\}.
\]

The solution of the determinant coefficient of the solution \(\zeta = e^{i\theta} \), so that \(P_{\theta\theta} \) and \(P_{\phi\phi} \) are determined by the formula (5.5) for every solution
\[
P_{\theta\theta} = \frac{6(B - \lambda S) B^{-1} A \left[\frac{3}{4} - \frac{2}{3} (A - \lambda S A^*)^{-1} \right]}{13 - 12 \cos 3\theta} A^{-1} B(B - \lambda S)^{-1} + \left[(A - \lambda S A^*)^{-1} M - I \right] A^{-1} B(B - \lambda S)^{-1} \cos 3\theta + (A - \lambda S A^*)^{-1} \cos 2(\alpha - \theta) \}
\]

(5.6)
\[
P_{\phi\phi} = -\frac{6 \lambda S B^{-1} (A + B)}{12 \cos 3\theta - 13} \left[(A - \lambda S A^*)^{-1} M + I \right] A^{-1} B(B - \lambda S)^{-1} \sin 3\theta + (A - \lambda S A^*)^{-1} \sin 2(\alpha + \theta) \}
\]

(5.7)
თუ $\alpha = 0$, ა. ა. ზეილერ-ჰამილტონის სიგანები ხდება Ox_1 ერთეულის გამჭვირვალობა. მონც (5.6),(5.7) წყალობებისგან გამორიცხავით

$$
P_{\theta} = \frac{6(B - \lambda_5 S)B^{-1}A}{13 - 12\cos3\theta} \left\{ \left[\frac{3}{2} I - \frac{2}{3}(A - \lambda_5 SA^*)^{-1} \right] A^{-1}B(B - \lambda_5 S)^{-1} +
(A - \lambda_5 SA^*)^{-1}(2\cos\theta - 3\cos2\theta) + [(A - \lambda_5 SA^*)^{-1}M - I]A^{-1}B(B - \lambda_5 S)^{-1}\cos\theta \right\},
$$

$$
P_{\theta} = -\frac{6\lambda_5 SB^{-1}(A + B)}{13 - 12\cos3\theta} \left\{ (A - \lambda_5 SA^*)^{-1}(2\sin\theta + 3\sin2\theta) -
[(A - \lambda_5 SA^*)^{-1}M + I]A^{-1}B(B - \lambda_5 S)^{-1}\sin\theta \right\}.
$$

თუ $\alpha = \frac{\pi}{2}$, ამისმდევნოდ გამოვიყენებთ

$$
P_{\theta} = \frac{6(B - \lambda_5 S)B^{-1}A}{13 - 12\cos3\theta} \left\{ \left[\frac{3}{2} I - \frac{2}{3}(A - \lambda_5 SA^*)^{-1} \right] A^{-1}B(B - \lambda_5 S)^{-1} -
(A - \lambda_5 SA^*)^{-1}(2\cos\theta - 3\cos2\theta) + [(A - \lambda_5 SA^*)^{-1}M - I]A^{-1}B(B - \lambda_5 S)^{-1}\cos\theta \right\},
$$

$$
P_{\theta} = -\frac{6\lambda_5 SB^{-1}(A + B)}{12\cos3\theta - 13} \left\{ (A - \lambda_5 SA^*)^{-1}(2\sin\theta + 3\sin2\theta) +
[(A - \lambda_5 SA^*)^{-1}M + I]A^{-1}B(B - \lambda_5 S)^{-1}\sin\theta \right\}.
$$

$\alpha = 0$ და $\alpha = \frac{\pi}{2}$ შესაძლოას, რომ თუ $\theta = 0$ და $\theta = \frac{\pi}{2}$, (3.143) ჯგუფისგან ასამყოფო ხდება გამჭვირვალობის გამო. თუ სრული ან ფრთა შეფარდება, თუმცა ისე რომ უფრო კლიმტებად გამოვიყენოთ ქვემოთ შეფარდება.

$U_2 = (u'_2, u''_2)^T = 0$, $P_{21} = (P'_{21}, P''_{21})^T = 0$, ხოლო $\theta = 0$, $0 < \rho \leq 1$ და $\theta = \pi$, $0 < \rho \leq 1$.

6. ძეგლიანი იმამების ტორცებიანი ქერძო ანალიზიც ბიჭვად ბრძოლა პროცესის ტორცებითი

თოვლის, თუ $\lambda_5 = 0$. ამისთვის, (2.28) და (2.27) დონესობრივი იქნება, გამოვიყენოთ

$$
P_{22} - P_{11} + 2iP_{12} = 2M \left\{ \overline{\Phi'(z)} + \overline{\Psi(z)} - (M + B)^{-1}B^T \int \partial \partial T dz \right\},
$$

$$
P_{11} + P_{22} = 2M \left\{ \Phi(z) + \overline{\Phi(z)} - (M + B)^{-1}B^TT \right\}.
$$

$\Delta T = 0$, თუ $\Delta T = 0$, $F(z)$ ანალიზის დონეთა ბრძოლა ხდება

$$
T = \frac{1}{2}(F(z) + \overline{F(z)}).
$$

126
პროპოზილ თავის (1.15') ფორმულით თანახმად, P_{33} სიტყვაში გამოჩენა შევხედოთ ფორმულა

$$P_{33} = [\Lambda(\Lambda + M)^{-1} - I]B^T + \frac{1}{2} \Lambda(\Lambda + M)^{-1}(P_{11} + P_{22}). \tag{6.4}$$

ხელით (6.3) ფორმულით (6.1) და (6.2) გამოვიდებით, შევხედოთ

$$P_{22} - P_{11} + 2iP_{12} = 2M \left\{ \bar{z}\Phi'(z) + \Psi(z) - \frac{1}{2}(M + B)^{-1}B^t\bar{z}F'(z) \right\}, \tag{6.1'}$$

$$P_{11} + P_{22} = 2M \left\{ \Phi(z) + \overline{\Phi(z)} - \frac{1}{2}(M + B)^{-1}B^t(F(z) + \overline{F(z)}) \right\}. \tag{6.2'}$$

ფორმულა, ა ცემით პროპოზილ თავა. ამით $\Phi(z)$, $\Psi(z)$ და $F(z)$ პროპოზილთან გამოვიდებით.

შესაძლოა არსებობდება

$$\Phi_0(z) := \Phi(z) - \frac{1}{2}(M + B)^{-1}B^tF(z).$$

საჭიროა, $\Phi_0(z)$ პროპოზილთან დახვდა (6.1'), (6.2') ფორმულით გადაწყვეტილებით შევხედოთ

$$P_{22} - P_{11} + 2iP_{12} = 2M \left\{ \bar{z}\Phi'_0(z) + \Psi(z) \right\}, \tag{6.5}$$

$$P_{11} + P_{22} = 2M \left\{ \Phi_0(z) + \overline{\Phi_0(z)} \right\}. \tag{6.6}$$

გადაწყვეტილებისსაფუძვლად კი, რერქტი თავის (2.25) ფორმულით თანახმად $\Phi_0(z)$ დეგრადატო მექანიკის გამოსახულებელ შემოვლენა გამოვიდებით

$$2U_+ = A^* \int \Phi_0(z) - z\overline{\Phi_0(z)} - \int \overline{\Psi(z)}dz + \frac{1}{2}(A^* + I)(M + B)^{-1}B^t \int F(z)dz. \tag{6.7}$$

დაშლილ შეფარდებით საუკუნი ვ არის γ სიმბოლური

$$P_{11} = 0, \quad P_{12} = 0 \quad \gamma - ზე, \tag{6.8}$$

რადგან ამისათვის გამოყენებით სივრცე გამოყენებაში შეიტანეთ და (6.5), (6.6) ფორმულებსაც

$$\Phi_0(\zeta) = \Psi(z) = 0,$$

$$P_{11} = P_{12} = P_{22} = P_{21} = 0. \tag{6.9}$$

P_{33}-ს კი გამოვიდებით (6.4) ფორმულით, (6.8)-ის გამოყენებით

$$P_{33} = M(\Lambda + M)^{-1}B^T. \tag{6.10}$$

U_+, უფრო (6.8) საიტოლოგიდებით, გამოვიდებით (6.7) ფორმულებსაც

$$U_+ = \frac{1}{4}(A^* + I)(M + B)^{-1}B^t \int F(z)dz. \tag{6.11}$$

ამავედ, თუ გამოვიყენოთ კოსმოგრაფიური პირველი ხანგრძლივობის შეუღიარება, გამოყენება გამოლგავით გათვალისწინებული სამუშაოსახლები და $\lambda_8 = 0$, საშინაოდ შევხვდეთ (6.8) ფორმულა.
\(T(x_1, x_2) \), ნაითები აქვთ პარამეტრული ლაშქრობის განიგზარება, გინისპირველა. შეიძლება ფუნქციო- ნული (6.9)-(6.11) ფორმულები.

გან. თუ \(\lambda_5 = 0 \), მაშინ ქსელობა გამოიწვის. შეიძლება გამოიწვიოს შემდეგი ფუნქციონელური ფორმული (125). თუ \(\lambda_5 \neq 0 \), მაშინ \(P_{ij} = (P_{ij}^T, P_{ij})^T \) სოლოდერვილოს. აქვს ამოსწორებული ქსელობა, არ ქსელობა გამოიწვის. შეიძლება გვხვდოთ, რომ ფაჰილების მიძღვნილ ლაპარატში დამოკიდებულად კარგადი ცოტართვის ფორმულის შემთხვევაში არ ქსელობა გამოიწვის პროცესი (125). თუ \(\Omega = 0 \), მაშინ ქსელობა გამოიწვის

\[
\begin{align*}
\sigma_{\alpha \beta} &= (-\beta^T - \alpha_2 + \lambda_1 \partial_2 u_\gamma + \lambda_3 \partial_4 u_\gamma)_{\alpha \beta} + \mu_1 (\partial_\alpha u_\beta + \partial_\beta u_\alpha) + \\
&+ \frac{1}{\mu_3} (\partial_\alpha u_\beta + \partial_\beta u_\alpha), \\
\sigma_{\alpha} &= (\sigma_{\alpha \alpha} + \sigma_{\alpha \gamma} + \sigma_{\alpha \gamma})_{\alpha \beta} + \mu_2 (\partial_\alpha u_\gamma + \partial_\gamma u_\alpha) + \\
&+ \frac{1}{\mu_3} (\partial_\alpha u_\gamma + \partial_\gamma u_\alpha), \\
\sigma_{\gamma} &= (\sigma_{\gamma \gamma} + \sigma_{\gamma \gamma} + \sigma_{\gamma \gamma})_{\alpha \beta} + \mu_2 (\partial_\gamma u_\beta + \partial_\beta u_\gamma) + \\
&+ \frac{1}{\mu_3} (\partial_\gamma u_\beta + \partial_\beta u_\gamma), \\
\delta_{\alpha} &= \delta_{\alpha \alpha} = \delta_{\alpha \gamma} = \delta_{\gamma \gamma} = 0, \\
\delta_{\gamma} &= \delta_{\gamma \gamma} = \delta_{\gamma \gamma} = \delta_{\gamma \gamma} = 0.
\end{align*}
\] (6.13)

\[
\begin{align*}
\delta_{11} &= (\delta_{11} + \delta_{11}) + \delta_{52} (\delta_{21} + \delta_{21}) + \rho_1 F_1' + \rho_2 F_2 + \\
&+ \delta_{12} (\delta_{12} + \delta_{12}) + \delta_{22} (\delta_{22} + \delta_{22}) + \rho_1 F_1' + \rho_2 F_2, \\
\delta_{21} &= (\delta_{21} + \delta_{21}) + \delta_{52} (\delta_{21} + \delta_{21}) + \rho_1 F_1' + \rho_2 F_2, \\
\delta_{22} &= (\delta_{22} + \delta_{22}) + \delta_{52} (\delta_{22} + \delta_{22}) + \rho_1 F_1' + \rho_2 F_2.
\end{align*}
\] (6.14)

\[
\begin{align*}
\delta_{11} &= (\delta_{11} + \delta_{11}) + \delta_{52} (\delta_{21} + \delta_{21}) + \rho_1 F_1' + \rho_2 F_2, \\
\delta_{12} &= (\delta_{12} + \delta_{12}) + \delta_{52} (\delta_{22} + \delta_{22}) + \rho_1 F_1' + \rho_2 F_2, \\
\delta_{22} &= (\delta_{22} + \delta_{22}) + \delta_{52} (\delta_{22} + \delta_{22}) + \rho_1 F_1' + \rho_2 F_2.
\end{align*}
\] (6.15)

\[
\begin{align*}
\sigma_{\alpha \alpha} &= \frac{1}{\lambda_1 + \lambda_4} \left(\lambda_2 + \lambda_3 \right), \\
\sigma_{\alpha \gamma} &= \frac{1}{\mu_1 + \mu_3} \left(\lambda_2 + \lambda_3 \right).
\end{align*}
\] (6.16)

\[
\begin{align*}
\lambda_1 + \lambda_4 &= \frac{\lambda_2 + \lambda_3}{\mu_1 + \mu_3}, \\
F_1^+ &= \rho_1 F_1' + \rho_2 F_2.
\end{align*}
\] (6.17)
(6.17) In this case, the solution of (6.15) is $u_1^+, u_2^+, \sigma_{11}^+, \sigma_{22}^+$, where $\sigma_{11}^+, \sigma_{22}^+$ are given by

\[
\begin{cases}
\partial_1 \sigma_{11}^+ + \partial_2 \sigma_{21}^+ + F_1^+ = 0, \\
\partial_1 \sigma_{12}^+ + \partial_2 \sigma_{22}^+ + F_2^+ = 0,
\end{cases}
\]

\[
\sigma_{11}^+ = -\beta^+ T + \frac{\lambda_3 + \lambda_2}{\mu_3 + \mu_2} \partial_\gamma u_1^+, \quad \sigma_{22}^+ = -\beta^+ T + \frac{\lambda_3 + \lambda_2}{\mu_3 + \mu_2} \partial_\gamma u_2^+ + 2\partial_2 u_2^+,
\]

\[
\sigma_{12}^+ = \sigma_{21}^+ = \partial_1 u_2^+ + \partial_2 u_1^+.
\]

Then

\[\beta^+ := \beta' + \beta''.\]

Equation (6.19) describes the case where σ_{33}^+ satisfies the governing differential equation

\[
\sigma_{33}^+ = -\beta^+ T + \frac{\lambda_3 + \lambda_2}{\mu_3 + \mu_2} \partial_\gamma u_3^+.
\]

(6.20) shows that

\[
\sigma_{33}^+ = -\frac{\mu_3 + \mu_2}{\lambda_3 + \lambda_2 + \mu_3 + \mu_2} \beta^+ T + \frac{\lambda_3 + \lambda_2}{2(\lambda_3 + \lambda_2 + \mu_3 + \mu_2)} (\sigma_{11}^+ + \sigma_{22}^+).
\]

Equation (6.21) states

\[
\partial_1 u_1^+ = \partial_2 u_2^+ = T, \quad \partial_2 u_1^+ = -\partial_1 u_2^+.
\]

Therefore, we have

\[
u_1^+ = \bar{u}_1 + \frac{\beta^+ (\mu_3 + \mu_2) u_1^+}{2(\lambda_3 + \lambda_2 + \mu_3 + \mu_2)}, \quad u_2^+ = \bar{u}_2 + \frac{\beta^+ (\mu_3 + \mu_2) u_2^+}{2(\lambda_3 + \lambda_2 + \mu_3 + \mu_2)}.
\]

Thus, \bar{u}_1, \bar{u}_2 are two admissible functions. The governing equations for the governing equations (6.18) are

\[
\sigma_{11}^+ = \frac{\lambda_3 + \lambda_2}{\mu_3 + \mu_2} \partial_\gamma \bar{u}_1 + 2\partial_1 \bar{u}_1, \quad \sigma_{22}^+ = \frac{\lambda_3 + \lambda_2}{\mu_3 + \mu_2} \partial_\gamma \bar{u}_2 + 2\partial_2 \bar{u}_2, \quad \sigma_{12}^+ = \sigma_{21}^+ = \partial_1 \bar{u}_2 + \partial_2 \bar{u}_1.
\]
$\frac{\lambda_3 + \lambda_2}{\mu_3 + \mu_2} > -\frac{2}{3}$.

(6.24) ნადერჯებს გამოკვეთილში გამოყოფილება იქმნის ფორმულა.

u_1^+, u_2^+ დანხეს ან (6.22)-ის თანახმად გამოთქვით მაქსმენი ფორმულებით

$$u_1^+ = \frac{\beta^+(\mu_3 + \mu_2)}{2(\lambda_3 + \lambda_2 + \mu_3 + \mu_2)} u_1^*, \quad u_2^+ = \frac{\beta^+(\mu_3 + \mu_2)}{2(\lambda_3 + \lambda_2 + \mu_3 + \mu_2)} u_2^*.$$

(6.25) დინამიკის ინ (6.24)-ის გათვალისწინებით გამოფრთხილდება

$$\sigma_{33}^+ = -\frac{\beta^+(\mu_3 + \mu_2)}{\lambda_3 + \lambda_2 + \mu_3 + \mu_2} T.$$

(6.26) ამ იმავე გადამწყვნილ მოდელში გამოყოფილი ფორმულებით გამოთქვით მაქსმენი ფორმულებით.

$$\frac{\lambda_1 + \lambda_4}{\mu_1 + \mu_3} = \frac{\lambda_3 + \lambda_2}{\mu_3 + \mu_2} > -\frac{2}{3}.$$

(6.27) სხვადასხვა სხვადასხვა სახის გაზომულება ჩამოყალიბდება ქვათმი.

$$\sigma_{11}' + \sigma_{11}'' = 0, \quad \sigma_{12}' + \sigma_{12}'' = 0.$$

(6.28) მაქსმენი სვალურია ალგორითმ შუა (6.24)-(6.26) დინამიკში.

(6.29) ფორმულები არსებობს ან (6.12) თანახმად გამოყოფილში ქვათმით (1.7) დინამიკში.

$$\Delta[(a_{11} + a_{21})t' + (a_{12} + a_{22})t''] = 0.$$

(6.30) დინამიკის შერჩევით შესწავლებით მაქსმენი ფორმულები

$$\frac{a_{11} + a_{21}}{\beta_{11} + \beta_{21}} = \frac{a_{12} + a_{22}}{\beta_{12} + \beta_{22}}.$$

130
თუ გადაწყვეტილი მქონეთი მაგალითი, მიმოქმედები აღწერს წყლის ამ კითხულობა, რომ 6.25 და 6.26 ფორმულაზე უჭირავ ბ და T ხიდის შემთხვევაში შეფასებით წინასწარ ხიდა

\[
\beta = \frac{\beta_1 + \beta_2}{a_1 + a_2}, \quad T = (a_{11} + a_{21}) t' + (a_{12} + a_{22}) t''.
\]

საშუალოდ ჰალართული არის ქცევა ოქუთა $F(z)$-ს წყლის სანტიმ შეფართები.

\[
F(z) = \sum_{k=1}^{m} B_k \ln(z - z_k) + \text{ჰელმოხოლი-ჰელმოხოლი ფუნქცია},
\]

სადაც $B_k, \quad k = 0, 1, \ldots, m$ დახვეცი ბუდონი ჯარის, ხოლო z_k რკინიგზის ჰორიზონტიალი წყალი ქცევი ჯარის ფაზიაქტიური წყალი ქცევი. (6.27) ფორმულაში თანახლო გამოყოლა

\[
u_1 + i u_2 = z \sum_{k=1}^{m} B_k \ln(z - z_k) + \sum_{k=1}^{m} (\alpha_k + i \beta_k) \ln(z - z_k) + \text{ჰელმოხოლი-ჰელმოხოლი ფუნქცია},
\]

სადაც α_k, β_k-ის მაქსიმალური არის ჯარი. γ_k-ის წყალი ქცევი ჯარის არსოს სრულყოფად გამოყოლა ჰელმოხოლი-ჰელმოხოლი ფუნქციაში არსოს ჭირირის ხიდებში.

\[
u_{1+} - u_{1-} + i(u_{2+} - u_{2-}) = 2\pi i (z B_k + \alpha_k + i \beta_k),
\]

გამოყოლილია, რომ u^+, u^- ჭირირის ქცევი ჯარი. შესავალი (6.22) ფორმული გამოყოლა

\[(u_{1+} - u_{1-}) + i(u_{2+} - u_{2-}) = -\frac{\pi i \beta^+ (\mu_3 + \mu_2)}{\lambda_3 + \lambda_2 + \mu_3 + \mu_2} (B_k z + \alpha_k + i \beta_k).
\]

შესაძლო, დატვირთული ქცევი შექმნილი შემთხვევაში

\[
\varepsilon_0 = -\frac{\pi \beta^+ (\mu_3 + \mu_2)}{\lambda_3 + \lambda_2 + \mu_3 + \mu_2} B_k, \quad \alpha_k = \frac{\pi \beta^+ (\mu_3 + \mu_2)}{\lambda_3 + \lambda_2 + \mu_3 + \mu_2} \beta_k, \quad \beta_k = -\frac{\pi \beta^+ (\mu_3 + \mu_2)}{\lambda_3 + \lambda_2 + \mu_3 + \mu_2} \alpha_k.
\]

შესაძლო, თუ გადაწყვეტილი მქონეთი შექმნილი შენორთები (6.27) ჰალართული. ბოლო ქანტალი მოყვანილები განიცადება (6.28) საშუალოდ ჰალართული. შესაარჩევად σ^+ მარჯვენა ჰალართულმა რიგმართ გამომხილი ჭირირმა არსოს ქცევი ჰალართულმა გამოყოლა ჰელმოხოლი-ჰელმოხოლი (6.29) ფორმულით შექმნილი ქცევი ჰალართულმა გამოყოლა.
§7. სივრცული სივრცე პარამეტრის ამოცნობის თვითმსახურებით სივრცე

გავლენის დარგმულობა აღუ. L ლანჯერი მიერ შემადგენლობით სივრცეგამჭვირალი აქტიური თვითმდებარე კამპანია;

$e^{i\sigma_\phi} + e^{-i\sigma_\phi}$

$\sigma_\phi = \frac{qR}{2} (e^{i\sigma_\phi} + e^{-i\sigma_\phi}$)

$\Delta T(\zeta, \bar{\zeta}) = 0,$

$\partial_{\zeta} T|\zeta = 0, \quad T^{\infty} = \frac{e^{i\sigma_\phi}}{2} (e^{i\sigma_\phi} + e^{-i\sigma_\phi}).$

R-სიტყვის რეალურა და შრუბაშე ადანინდებათ სივრცეგამჭვირალი აქტიური თვითმდება.

$T(\zeta, \bar{\zeta}) = \frac{qR}{2} \left[e^{i\sigma_\phi} \left(\frac{\zeta + 1}{\bar{\zeta}} \right) + e^{-i\sigma_\phi} \left(\frac{\zeta + 1}{\bar{\zeta}} \right) \right], \quad (7.1)$

$\Phi(\sigma) + (A - \lambda_s S A^*)\Phi(\sigma) = \frac{\sigma_\phi}{\omega(\sigma)} \left[\omega(\sigma)\Phi'(\sigma) + \omega'(\sigma)\Psi(\sigma) \right] =

= M(A + B)^{-1} B_t \left[T(\zeta, \bar{\zeta}) - \zeta^2 \int T(\zeta, \bar{\zeta}) d\zeta \right] \mid_{\zeta = \sigma}. \quad (7.4)$

1. სივრცული სივრცე.

$\omega(\zeta) = R \left(\zeta - \frac{1}{6\zeta^3} \right).$

(7.1) შერად $\Phi(\sigma) = A - \frac{\sigma_\phi}{\omega(\sigma)} \left[\omega(\sigma)\Phi'(\sigma) + \omega'(\sigma)\Psi(\sigma) \right] =

= (A + B)^{-1} B_t \frac{\sigma_\phi}{\omega(\sigma)} \left[e^{i\alpha(18 + 5\sigma^4)} + e^{-i\sigma(6 + 7\sigma^4)} \right]. \quad (7.5)$

132
(7.5) მათემატიკურ ანალიზის ახალგაზრდობლობის წყალობა

\[
\Phi(\sigma) + M^{-1}(A - \lambda_5 S A^*) \Phi(\sigma) - \frac{1}{\sigma^2} \omega'(\sigma) \left[\omega(\sigma) \Phi'(\sigma) + \omega'(\sigma) \Phi(\sigma) \right] = (A + B)^{-1} B^t q R \left[e^{-i\alpha} \sigma (18\sigma^4 + 5) + e^{i\alpha} 6\sigma^4 + 7 \right].
\]

(7.6)

\[
\Phi(\zeta) = a_1 \zeta + \sum_{n=1}^{\infty} a_{-n} \zeta^{-n}, \quad \Psi(\zeta) = \sum_{n=1}^{\infty} b_{-n} \zeta^{-n}.
\]

(7.7)

\[
M^{-1}(A - \lambda_5 S A^*) \left[(1 + 2\zeta^4)(a_1 \Phi(\zeta) + 2a_{-1} \zeta^3 + 2a_{-2} \zeta^2 + 2a_{-3} \zeta + 2a_{-4}) - \frac{4a_1}{3 \zeta} \right] = -\frac{7}{6} (A + B)^{-1} B^t q R e^{i\alpha} \frac{1}{\zeta}.
\]

(7.8)

\[
M^{-1}(A - \lambda_5 S A^*) \left[\frac{1 + 2\zeta^4}{\zeta^5} \Phi(\zeta) + 2a_1 \right] - \frac{4a_1}{3 \zeta^6} - \frac{2a_{-1}}{3 \zeta^4} - \frac{1a_{-2}}{3 \zeta^3} + \frac{1a_{-4}}{3 \zeta^2} + \frac{2b_{-1}}{\zeta} + \frac{2b_{-2}}{\zeta} = -\frac{1}{2} (A + B)^{-1} B^t q R \left[\frac{5}{3} e^{-i\alpha} \frac{1}{\zeta^4} + e^{i\alpha} \frac{1}{\zeta^2} \left(2 + \frac{7}{3 \zeta^4} \right) \right].
\]

(7.9)

\[
M^{-1}(A - \lambda_5 S A^*)(a_1 + 2a_{-3}) = -\frac{2}{3} a_{-1} + \frac{5}{6} (A + B)^{-1} B^t q R e^{-i\alpha},
\]

\[
2M^{-1}(A - \lambda_5 S A^*)a_{-1} = 2b_{-1} + (A + B)^{-1} B^t q R e^{i\alpha},
\]

\[
a_{-2} = a_{-4} = (0, 0)^T.
\]

(7.10)

\[
A^* a_{-1} + b_{-1} = -\frac{1}{2} (A + B)^{-1} B^t q R e^{i\alpha},
\]

(7.11)

\[
a_1 = \frac{1}{2} (A + B)^{-1} B^t q R e^{-i\alpha},
\]

(7.12)

\[
(P_{\theta \theta} - P_{\rho \rho})^\infty = (P_{\rho \theta} + P_{\theta \rho})^\infty = 0,
\]

133
$a_1 = 0,
 a_{-3} = -\frac{1}{4} \left[\frac{5}{3} (A - \lambda_5 S A^*)^{-1} M - I \right] (A + B)^{-1} B^i q R e^{-i \alpha}.$

თუ (7.7)-ის უზრუნველყოფის ალგორითმს არჩეული ნომენკლატურის გამო, მოპოვებთ

$$\Phi(\zeta) = \frac{R}{2} \left[\frac{1}{1 + 2 \zeta^4} \left[(A - \lambda_5 S A^*)^{-1} M e^{i \alpha} + \zeta \left(\frac{5}{3} (A - \lambda_5 S A^*)^{-1} M + 2 I \zeta^4 \right) e^{-i \alpha} \right] \times (A + B)^{-1} B^i q. \quad (7.12)$$

(7.2)-ს თანდათან საინტეგრზომ შევხედებით ფიზიკური თანამშრომები

$$P_{\theta \theta} + P_{\theta \phi} = 4(B - \lambda_5 S)B^{-1} A R e^{[\Phi(\zeta)]} - 2 M(A + B)^{-1} B^i T,$$

$$P_{\phi \theta} - P_{\theta \phi} = -4 \lambda_5 S B^{-1} (A + B) \operatorname{Im}[\Phi(\zeta)].$$

თუ ამ შუა ვარიანტიშ ფორმალური გამოყენება (7.1) და (7.12) უპასუხებლობს და დამატებით

$$\zeta = e^{i \theta},$$

გამოსახულებაში საჭირო არის იმისთვის, რომ ბეჭდობითი ცვლილებები $P_{\theta \phi} = P_{\phi \theta} = 0$, მათგანთან $P_{\theta \theta}$ და $P_{\phi \phi}$ შედეგში ნომენკლატურის გამომჯდომარე ფიზიკური ცვლილება

$$P_{\theta \theta} = \frac{2 R}{5 + 4 \cos \theta} \left\{ \left[\frac{8}{3} (B - \lambda_5 S)B^{-1} A((A - \lambda_5 S A^*)^{-1} + \frac{3}{2} M^{-1}) - 10 I \right] \cos(\theta - \alpha) + \right.$$

$$+ \left[\frac{10}{3} (B - \lambda_5 S)B^{-1} A(A - \lambda_5 S A^*)^{-1} - 4 I \right] \cos(3 \theta + \alpha) +$$

$$+ \left[2(B - \lambda_5 S)B^{-1} A((A - \lambda_5 S A^*)^{-1} + M^{-1}) - 4 I \right] \cos(5 \theta - \alpha) \right\} M(A + B)^{-1} B^i q, \quad (7.13)$$

$$P_{\phi \phi} = \frac{4 \lambda_5 S B^{-1} (A + B)}{5 + 4 \cos \theta} \left\{ \left[\frac{1}{3} (A - \lambda_5 S A^*)^{-1} + 2 M^{-1} \right] \sin(\theta - \alpha) - \frac{5}{3} (A - \lambda_5 S A^*)^{-1} \right.$$

$$\times \sin(3 \theta + \alpha) + \left[M^{-1} - (A - \lambda_5 S A^*)^{-1} \right] \sin(5 \theta - \alpha) \right\} M(A + B)^{-1} B^i q. \quad (7.14)$$

თუ (7.13), (7.14) ფორმულებიდან დამატებით $\lambda_5 = 0$ და გამოყენებით, იშლილ შედეგში საინტეგრო სივრცეში, გამოთვალათ

$$P_{\theta \theta} = \frac{4 R}{3 5 + 4 \cos \theta} \left[5 \cos(\theta - \alpha) + \cos(3 \theta + \alpha) \right] M(A + 2 M)^{-1} B^i q,\quad P_{\phi \phi} = 0. \quad (7.15)$$

2. ფორმულირებულ სპექტრი. შეყვანა ფუნქცია

$$\omega(\zeta) = R \left(\zeta + m \zeta \right)$$

α და b სამაგალითო შეთანხმებით ფორმულირებულ სპექტრი შევხვდებით სივრცეში გამოყენებით ფიზიკური ცვლილება.

134
\(\Phi(\zeta) = (\Phi_1(\zeta), \Phi_2(\zeta))^T \), \(\Psi(\zeta) = (\Psi_1(\zeta), \Psi_2(\zeta))^T \) დაინტეგრირების მიხედვით ღირსშესანიშნავი სხვაობა შეფარდებია.

\[
\Phi(\sigma) + M^{-1}(A - \lambda S A^*)\Phi(\sigma) - \frac{1}{2\pi i} \int_\gamma \left(\frac{1}{\sigma^2 - m} \Phi'(\sigma) + (1 - \sigma^2 m)\Psi(\sigma) \right) \frac{d\sigma}{\sigma - \zeta} = \frac{1}{2}(A + B)^{-1}B^t q R \left[\Phi(\sigma) + (1 - \sigma^2 m)\Psi(\sigma) \right].
\]

(7.15)

სპგ 7.15-ის თეორემა შეიძლება გამოიყენოთ მთელი \(\int_{\sigma = \zeta}^{\zeta} \frac{e^{2-m}}{\sigma - \zeta} \) ჯილდო ოდენობის ჩართვისთვის ღმერთთან გამორტოვებით, როდის \(|\zeta| > 1 \).

\[
\frac{1}{2\pi i} \int_\gamma (\sigma^2 - m)\Phi(\sigma) \frac{d\sigma}{\sigma - \zeta} = \frac{m\tilde{a}_1}{\zeta}; \quad \frac{1}{2\pi i} \int_\gamma (\sigma^2 - m)\Psi(\sigma) \frac{d\sigma}{\sigma - \zeta} = \frac{m\tilde{a}_1}{\zeta} + \frac{m\tilde{a}_{-1}}{\zeta},
\]

\[
\frac{1}{2\pi i} \int_\gamma \frac{\sigma^2 + m}{\sigma^2} \Phi(\sigma) \frac{d\sigma}{\sigma - \zeta} = \frac{m\tilde{a}_1}{\zeta} + \frac{m\tilde{a}_{-1}}{\zeta}, \quad \frac{1}{2\pi i} \int_\gamma \frac{\sigma}{\sigma^2} \Psi(\sigma) \frac{d\sigma}{\sigma - \zeta} = \frac{m\tilde{a}_1}{\zeta} + \frac{m\tilde{a}_{-1}}{\zeta}.
\]

მიუხედავად იქმნება

\[
\frac{2m}{\zeta} \tilde{a}_1 + M^{-1}(A - \lambda S A^*)[\zeta(\sigma^2 - m)\tilde{a}_1 + \tilde{a}_{-1} - \frac{m(\zeta^2 - m)}{2\zeta}(A + B)^{-1}B^t q Re^{i\alpha} = M^{-1}(A - \lambda S A^*)[\zeta(\sigma^2 - m)\tilde{a}_1 + \tilde{a}_{-1} - \frac{m(\zeta^2 - m)}{2\zeta}],
\]

(7.16)

იქმნება

\[
\frac{1}{2\pi i} \int_\gamma \Phi(\sigma) \frac{d\sigma}{\sigma - \zeta} = \frac{m\tilde{a}_1}{\zeta} + \frac{m\tilde{a}_{-1}}{\zeta}, \quad \frac{1}{2\pi i} \int_\gamma \Psi(\sigma) \frac{d\sigma}{\sigma - \zeta} = \frac{m\tilde{a}_1}{\zeta} + \frac{m\tilde{a}_{-1}}{\zeta}.
\]

\[
\frac{1}{2\pi i} \int_\gamma \Psi(\sigma) \frac{d\sigma}{\sigma - \zeta} = \frac{m\tilde{a}_1}{\zeta} + \frac{m\tilde{a}_{-1}}{\zeta}, \quad \frac{1}{2\pi i} \int_\gamma \frac{\sigma}{\sigma^2} \Psi(\sigma) \frac{d\sigma}{\sigma - \zeta} = \frac{m\tilde{a}_1}{\zeta} + \frac{m\tilde{a}_{-1}}{\zeta}.
\]

გამოკვლევა შედგება ჯილდო

\[
\frac{2m}{\zeta} \tilde{a}_1 + M^{-1}(A - \lambda S A^*)[\tilde{a}_1 + \frac{m}{2}(A + B)^{-1}B^t q R \left[(-\zeta + \frac{3m}{\zeta})e^{i\alpha} + m\zeta e^{-i\alpha} \right] = M^{-1}(A - \lambda S A^*)[\tilde{a}_1 + \frac{m}{2}(A + B)^{-1}B^t q R e^{i\alpha} - me^{-i\alpha}].
\]

(7.17)

თუ ჯილდოთა კასპიანა-კომპლექსზე შეიძლება (7.16) და (7.17) ფიქსირდებოდეს ფორმულა

\[
M^{-1}(A - \lambda S A^*)[-ma_1 + a_{-1}] = \frac{m}{2}(A + B)^{-1}B^t q R (e^{i\alpha} - me^{-i\alpha}).
\]

(7.18)
\[a_1 = \frac{1}{2} (A - \lambda_5 S A^*)^{-1} M (A + B)^{-1} B^t q R e^{-i\alpha}, \]

\[(P_{\theta \theta} + P_{\rho \rho})^\infty = (P_{\theta \rho} - P_{\rho \theta})^\infty = 0, \]

\[a_{-1} = 0. \]

თუ ხასიათი \(a_1 \) და \(a_{-1} \)-ს აქ მიმოქმედებს (7.17)-ში, მიმდევრობით წესრგება გამოითვალისწინებს \(\Phi(\zeta) \)-სისტემა.

\[\Phi(\zeta) = \frac{(A - \lambda_5 S A^*)^{-1} M}{2(\zeta^2 - m)} \left[(2(A - \lambda_5 S A^*)^{-1} M - 3I) \frac{me^{i\alpha}}{\zeta} + I e^{-i\alpha} \zeta (\zeta^2 - m) \right] (A + B)^{-1} B^t q R. \]

\[\Psi(\zeta) \text{-ს ერთი (7.15) ტრანსფორმაცია შეიძლება მარტივად დაესწოროს და (7.19)-ის კონტურთაღურით. შეგეგმით მიმდევრობით წესით ჯგუფი მექანიკურ ექსპერიმენტებში წინა წესების ანა-

\[P_{\theta \theta} = \begin{vmatrix} 2(B - \lambda_5 S) B^{-1} A (A - \lambda_5 S A^*)^{-1} M \left\{ 2((A - \lambda_5 S A^*)^{-1} M - 2I) \left(m(\cos(3\theta - \alpha) +
+ m \cos(\theta - \alpha)) + I \cos(\theta - \alpha) - m I \cos(\theta + \alpha) \right) - 4 M \cos(\theta - \alpha) \right\} (A + B)^{-1} B^t q R; \]

\[P_{\theta \rho} = \frac{2\lambda_5 S B^{-1} (A + B)(A - \lambda_5 S A^*)^{-1} M}{1 + m^2 - 2 m \cos(2\theta)} \left\{ 2((A - \lambda_5 S A^*)^{-1} M - I) \left(m^2 \sin(\theta - \alpha) -
- m \sin(3\theta - \alpha) \right) + I \sin(\theta - \alpha) + m I \sin(\theta + \alpha) \right\} (A + B)^{-1} B^t q R. \]

3. წრიული შორატი. თუ \(\Phi_0 \) ძირითადი მასწავლებელი ფუნქციამდე \(m = 0, \) \(\alpha = 0, \) მაგრამი ჭრილის ხმაურის მმართველი ჩვენისტი თბილის უმაღლადი სამეცნიერო ინსტიტუტი გამოაქვს.

(7.20) და (7.21) წყაროებით, ძირითადი მიმდევრობის კონტურთაღური სისტემა წინა წესნაში გამოითვალისწინებს

\[P_{\theta \theta} = 2 \left((B - \lambda_5 S) B^{-1} A (A - \lambda_5 S A^*)^{-1} M (A + B)^{-1} B^t q R \cos \theta, \right. \]

\[P_{\theta \rho} = 2 \lambda_5 S B^{-1} (A + B)(A - \lambda_5 S A^*)^{-1} M (A + B)^{-1} B^t q R \sin \theta. \]

იმ უმეტეს კლასიკური ფორმალიზაციას ჩანს, რომ \(P_{\theta \theta} \) ძირითადი მასწავლებელი ხმაურის მიმდევრობით წყაროებით ხმაურის კონტურთაღური პირველ წესზე \(\theta = 0 \) და \(\theta = \pi \) წესზე, ხოლო \(P_{\theta \rho} \)

\[\theta = \frac{\pi}{2} \text { და } \theta = \frac{3\pi}{2} \] წესზე.
(8.1) სახელწოდება ამორცვილი არხზე მოახდინეთ

\[
\begin{align*}
A_0 U^{(0)}_3 + 3 B \delta_3^{(0)} + \frac{2}{h} \Lambda \delta_3^{(1)} U_3^{(1)} &= 0, \\
A_0 U^{(0)}_3 - \frac{3}{h} \Lambda_0 \theta - \frac{3}{h} (A + B) U^{(1)}_3 &= 0.
\end{align*}
\]

(8.1) სახელწოდება იზოლებულ არხზე მოახდინეთ მილთა თანახმად

\[
\begin{align*}
2 U^{(0)}_3 &= A_0^* \varphi^2(z) - 2 \varphi^2(z) - \psi(z) - \frac{4h}{3} (A + B)^{-1} \Lambda \delta_3 \chi(z, \bar{z}), \\
U^{(1)}_3 &= \frac{1}{2} \Lambda_0^* A^{-1} \Lambda (A + B)^{-1} G(\varphi'_{(z)} + \varphi'^2(z)) + \Lambda \chi(z, \bar{z}),
\end{align*}
\]

სადაც \(\varphi(z) = (\varphi_1(z), \varphi_2(z))^T, \quad \psi(z) = (\psi_1(z), \psi_2(z))^T \) - ნოლექტრიის აბსოლუციურ ღრუბული
- ღრუბულზე, \(\chi(z, \bar{z}) = (\chi_1(z, \bar{z}), \chi_2(z, \bar{z}))^T, \quad \chi_0(z, \bar{z}) \) ღრუბულთა თანახმად (6.11) მომავალზე ღრუბულთა
- ზომილი ან გამოკირთულთა, \(\Lambda, \quad G, \) და \(\Lambda^* \), 2 x 2 მატრიცები გამოსახულებით წარმოდგენა წარმოდგენა (6.9) და (6.15) დონინალების სახელწოდება.

ღრუბულთა თანახმად (6.20)-(6.23) დონინალების ინტერპოლაციის ღრუბულთა ღრუბულთა
- ღრუბულთა ღრუბულთა ღრუბულთა ღრუბულთა ღრუბულთა ღრუბულთა ღრუბულთა ღრუბულთა ღრუბულთა

\[
\begin{align*}
P^{(0)}_{11} + P^{(0)}_{22} + i (P^{(0)}_{12} - P^{(0)}_{21}) &= 2 \left\{ (A - \lambda_5 S A^*) \varphi(z) + M \varphi^2(z) + \frac{1}{h} M (A + B)^{-1} \Lambda \Lambda \chi(z, \bar{z}) \right\}, \\
P^{(0)}_{22} - P^{(0)}_{11} + i (P^{(0)}_{12} + P^{(0)}_{21}) &= 2 M \left\{ \bar{\varphi}''(z) + \psi(z) + \frac{4h}{3} (A + B)^{-1} \Lambda \delta_3 \chi(z, \bar{z}) \right\}, \\
P^{(1)}_+ &= P^{(1)}_{13} + i P^{(1)}_{23} = A \left\{ -h \Lambda \varphi''(z) + 2 \Lambda \delta_3 \chi(z, \bar{z}) \right\}, \\
+ P^{(1)}_{13} + i P^{(1)}_{32} = (B - \Lambda) \left\{ -h \Lambda \varphi''(z) + 2 \Lambda \delta_3 \chi(z, \bar{z}) \right\},
\end{align*}
\]

სადაც \(\Lambda \) მატრიცა და გამოკირთულთა გამოკირთულთა (6.24) დონინალები.

თანახმად ნოლექტრიის არხზე \(R \) ღრუბულთა ღრु
პროგნოზირებისთვის თანამედროვე (8.3)-(8.6) წყალმყოფელების სახელწოფო (8.7) სამშენებლო
პროცესით ჩატარებული ამოცნობით სხვადასხვა შუაგრძელით
\[\begin{align*}
\Phi^{(0)}_{rr} - i \Phi^{(0)}_{r\theta} &= M \Phi(z) + (A - \lambda_A S A^*) \Phi(z) - M \left[z \Phi'(z) + \Psi(z) \right] e^{2i\theta} + \\
&+ M(A + B)^{-1} \Lambda \left[\frac{1}{\hbar} L \chi(z, \bar{z}) - \frac{4}{3} A^{-1} L \delta_{zz} \chi(z, \bar{z}) e^{2i\theta} \right] = 0, \quad r = R, \\
A^{-1} \Phi^{(1)}_{r \theta} &= Re \left\{ \left[\bar{z} \Phi'(z) + 2 L \delta_{zz} \chi(z, \bar{z}) \right] e^{i\theta} \right\} = 0, \quad r = R,
\end{align*}\]

საივე ტრანსფორმირებული ტექსტი. ახლომეტრიალური განტონება (7.3) ხშირად გამოყენებულია მათემატიკის სფერო.
\[\begin{align*}
\Phi(z) &= \sum_{n=0}^{\infty} a_n \frac{e^{-i\theta}}{z^n}, \quad \Psi(z) = \sum_{n=0}^{\infty} b_n \frac{e^{-i\theta}}{z^n}, \quad \chi(z, \bar{z}) = \sum_{n=0}^{\infty} K_n(r) \alpha_n e^{i\theta}, \\
\end{align*}\]

საივე ნახატოვ და (a', a'')_T, b_n = (b', b'')_T, a_n = (a', a'')_T,
\[\begin{align*}
K_n^M(r) := \begin{pmatrix}
K_n \left(\frac{\sqrt{3 \pi} \hbar}{r} \right) & 0 \\
0 & K_n \left(\frac{\sqrt{3 \pi} \hbar}{r} \right)
\end{pmatrix},
\end{align*}\]

\[K_n \left(\frac{\sqrt{3 \pi} \hbar}{r} \right)-\text{ეკსპონენციული ფუნქცია, რითაც აღწერს რაოდენობი უკანასკნელ} \quad |z| \gg n \text{ სიმულირების ფართი.}
\]

ხშირად გამოყენებული ტექსტი შეიძლება დამოუკიდებელი გახსნილით.
\[\begin{align*}
K_n(z) &= \sqrt{\frac{\pi}{2z}} e^{-iz} \left(1 + O \left(\frac{1}{z} \right) \right).
\end{align*}\]

\[\begin{align*}
2(\Lambda + M)B^{-1} Aa_0 - Mb_0 &= p, \\
2(\Lambda + M)B^{-1} Aa_0 + Mb_0 &= 0,
\end{align*}\]

საივნე
\[\begin{align*}
a_0 &= \frac{1}{4} A^{-1} B(\Lambda + M)^{-1} p, \quad b_0 = -\frac{1}{2} M^{-1} p.
\end{align*}\]

გახსნილის ჭირდება (8.3)-(8.6) განტონებით
\[\begin{align*}
K_{-n}(z) &= K_n(z), \\
\partial_z (K_n(\eta r) e^{i\theta}) &= -\frac{\eta}{2} K_{n-1}(\eta r) e^{i(n-1)\theta}, \\
\partial_{\bar{z}} (K_n(\eta r) e^{i\theta}) &= -\frac{\eta}{2} K_{n+1}(\eta r) e^{i(n+1)\theta},
\end{align*}\]

\[\begin{align*}
\frac{4\hbar}{3} L \tilde{K}^2 = \frac{1}{\hbar} \tilde{A} L,
\end{align*}\]

138
\[
\bar{K} = \frac{\sqrt{3}}{2h} \begin{pmatrix} \sqrt{\alpha_1} & 0 \\ 0 & \sqrt{\alpha_2} \end{pmatrix},
\]

\[
\sum_{n=0}^{\infty} M \frac{1+n}{R^n} a_n e^{-in\theta} + (A - \lambda_5 SA^*) \sum_{n=0}^{\infty} \bar{a}_n e^{in\theta} - M b_0 e^{2i\theta} - M \sum_{n=0}^{\infty} \frac{b_{n+2}}{R^{n+2}} e^{-in\theta} - \frac{b_1}{R} e^{i\theta} + \frac{1}{h} M (A + B)^{-1} \Lambda \sum_{n=-\infty}^{\infty} [K_n^M(R) - K_{n-2}^M(R)] \alpha_n e^{in\theta} = 0,
\] (8.14)

\[
h \bar{A} \left\{ \sum_{n=0}^{\infty} \frac{n a_n}{R^{n+1}} e^{-in\theta} + \sum_{n=0}^{\infty} \frac{n \bar{a}_n}{R^{n+1}} e^{in\theta} \right\} - 2 \bar{\Lambda} \bar{K} \sum_{n=-\infty}^{\infty} [K_{n-1}^M(R) + K_{n+1}^M(R)] \alpha_n e^{in\theta} = 0.
\] (8.15)

ღორძიან ქონის ფუნქცია, აღწერილი ვარსკვლა

\[
\alpha_n = \bar{\alpha}_{-n}.
\]

თუ (8.15)-ის გამოყენებით 0-ის თავისუფალი ქვერით ჯაჭვი, მოცემულია

\[
\alpha_0 = 0.
\] (8.16)

თუ განონირენებით (8.16)-ის, (8.14)-გამოყენებით ქვერით ჯაჭვი ნევლად გამოყვანილია და ან-ის (8.13) თვლებით განონირენებით გამოყვანილია

\[
b_2 = R^2 (I + M^{-1}(A - \lambda_5 SA^*)) a_0.
\]

გადალაპარაკების სახურავთა პარამეტრი, რადგანაც \(U^{(0)} + \Lambda \) (8.2) გამოყვანილი და (8.11) გამოყვანილი ჩანს, მოცემულ ქვერით

\[
A^* a_1 + \bar{b}_1 = 0.
\] (8.17)

(8.14)-გამოყენებით ქვერით ჯაჭვი ნევლად გამოყვანილი გამოყვანილია

\[
(A - \lambda_5 SA^*) a_1 - M \bar{b}_1 = 0.
\] (8.18)

(8.17) და (8.18) გაზაფხულების სილამაშეთ ითვლის. (8.17)-ის გამოყვანილით \(\bar{b}_1\) და ხოლო (8.18)-გა, მოცემული

\[
A(I + A^*) a_1 = 0.
\]

მიღწევით \(A(I + A^*)\) არხზეთ არხალანგრნებული, აღწერილი

\[
a_1 = b_1 = 0.
\] (8.19)
(8.14) და (8.15)–ში $e^{2i\theta}$-ის კომპლექსური ღიანი კოეფიციენტი და b_0–ს (8.13) გამოყოფილის საფუძველი ფორმულების შედეგად ექვსგან შემდეგ სისტემა

$$
\frac{1}{R^2} \left(A - \lambda_5 S A^* \right) a_2 + \frac{1}{h} M (A + B)^{-1} \Delta \mathcal{L} (K_2^M (R) - K_0^M (R)) \alpha_{-2} = -\frac{1}{2} p,
$$

$$
\frac{h}{R^3} \tilde{\Delta} a_2 - \tilde{\Delta} \overline{K} (K_1^M (R) + K_3^M (R)) \alpha_{-2} = 0,
$$

(8.20)

სადაც a_2 და α_{-2} ფორმულების შედეგები. (8.20) სისტემას გამოთვლის შემდეგ შემდეგი სისტემა აქვთ

$$
a_2 = \frac{R^3}{h} \tilde{\Delta}^{-1} \overline{K} (K_1^M (R) + K_3^M (R)) \alpha_{-2}.
$$

(8.21)

(8.21) სახელწოდებით (8.20)-ში, გამოთვლის

$$
\alpha_{-2} = \frac{h}{2} \left\{ M (A + B)^{-1} \Delta \mathcal{L} (K_0^M - K_2^M) - (A - \lambda_5 S A^*) \tilde{\Delta}^{-1} \overline{K} (K_1^M + K_3^M) \right\}^{-1} p.
$$

(8.22)

(8.14)-ში და (8.15)-ში თუ $\lambda_5 = 0$-ის დროს $e^{in\theta}, n \geq 3$ კომპლექსური ღიანი ფორმულების შედეგად მიმოქმედის უკანასკნელი ფუნქციები ნიშნები ითვლებიან სისტემა

$$
\frac{1}{R^n} \left(A - \lambda_5 S A^* \right) a_n + \frac{1}{h} M (A + B)^{-1} \Delta \mathcal{L} (K_n^M (R) - K_{n-2}^M (R)) \alpha_{-n} = 0,
$$

$$
\frac{n h}{R_{n+1}} \tilde{\Delta} a_n - 2 \overline{K} (K_{n-1}^M (R) + K_{n+1}^M (R)) \alpha_{-n} = 0, \quad n \geq 3.
$$

(8.23)

წინისთან დაკავშირებით სისტემის ტერმინები გამოთვლილად ჰქონდათ სახით $a_n = \alpha_{-n} = \bar{a}_n = 0$, როდესაც $n \geq 3$.

(8.24)

(8.15) წინასთან დაკავშირებით 0-ის $e^{-i\theta}$-ის გამოყოფილა კოეფიციენტი ღიანი და $\alpha_{-1} = 0$-ის პირველი რიცხოვნობით (8.19), მიმოქმედის

$$
\alpha_{-1} = 0, \quad \text{გარ.} \quad \alpha_1 = 0.
$$

(8.25)

ისევე დაკავშირებით (8.14)-ში და (8.15)-ში ფორმულებით (8.25), გამოთვლის

$$
b_3 = 0.
$$

(8.14)-ში დაკავშირებით ბროშა $e^{-2i\theta}$ კომპლექსური ღიანი, მიმოქმედის

$$
b_4 = 3 R^2 a_2 + \frac{R^4}{h} \left(A + B \right)^{-1} \Delta \mathcal{L} (K_2^M (R) - K_4^M (R)) \alpha_{-2},
$$

სადაც α_{-2} და a_2 ფორმულების შედეგად (8.22) და (8.21) საფუძველი სისტემად. $e^{-in\theta}, n \geq 3$ კომპლექსური ღიანი ნიშანივ გამოყოფილი და (8.24)-ში გამოყოფილი ღიანი მიმოქმედის გამოყოფილ სისტემაში დაგეგმილი დიფფერენცირებული
\[M b_{n+2} = 0, \quad n \geq 3, \]

so that \(b_{n+2} = 0, \quad \text{for} \quad n \geq 3. \)

Moreover, the following results follow straightforwardly:

\[
\Phi(z) = \frac{1}{4} A^{-1} B(\Lambda + M)^{-1} p + \frac{a_2}{z^2}, \quad \Psi(z) = -\frac{1}{2} M^{-1} p + \frac{b_2}{z^2} + \frac{b_4}{z^4}, \\
\chi(z, \bar{z}) = 2K_2^M(r)\alpha_2 \cos 2\theta.
\]

(8.3)–(8.6) follow straightforwardly from the definitions of the operators and the properties of the functions and solutions.

\[
P^{(0)}_{rr} + P^{(0)}_{\theta \theta} = (A + M - \lambda_5 S A^*) \Phi(z) + \overline{\Phi(z)} + \frac{1}{h} M(A + B)^{-1} \Lambda L \chi(z, \bar{z}), \\
P^{(0)}_{r \theta} = -2\lambda_5 S Im \Phi(z), \\
P^{(0)}_{\theta \theta} - P^{(0)}_{r r} + i(P^{(0)}_{r \theta} + P^{(0)}_{\theta r}) = 2M \left\{ \bar{z} \Phi'(z) + \Psi(z) + \frac{4h}{3}(A + B)^{-1} \Lambda \bar{A}^{-1} L \partial_{zz} \chi(z, \bar{z}) \right\} e^{2i\theta}, \\
(1) P^{(1)}_{r r} = A Re \left\{ (-h \bar{A} \Phi'(z) + 2L \partial_z \chi(z, \bar{z})) e^{i\theta} \right\}, \\
(1) P^{(1)}_{r \theta} = (B - \Lambda) Re \left\{ (-h \bar{A} \Phi'(z) + 2L \partial_z \chi(z, \bar{z})) e^{i\theta} \right\},
\]

so that, for the subsequent analysis, the following operators and expressions are obtained:

\[
P^{(0)}_{rr} = \frac{1}{4} [(A - \lambda_5 S A^* + M)A^{-1} B(\Lambda + M)^{-1} + 2i \cos 2\theta] p + \\
+ \frac{1}{r_2^2} [(A - \lambda_5 S A^* + 3M)\alpha_2 \cos 2\theta - Mb_2] - \frac{1}{r_4^2} Mb_4 \cos 2\theta + \\
+ \frac{1}{h} M(A + B)^{-1} \Lambda L(K_2^M(r) - K_0^M(r) - K_4^M(r))\alpha_2 \cos 2\theta, \\
P^{(0)}_{\theta \theta} = \frac{1}{4} [(A - \lambda_5 S A^* + M)A^{-1} B(\Lambda + M)^{-1} - 2i \cos 2\theta] p + \\
+ \frac{1}{r_2^2} [(A - \lambda_5 S A^* - M)\alpha_2 \cos 2\theta + Mb_2] + \frac{1}{r_4^2} Mb_4 \cos 2\theta + \\
+ \frac{1}{h} M(A + B)^{-1} \Lambda L(K_0^M(r) + K_2^M(r) + K_4^M(r))\alpha_2 \cos 2\theta, \\
P^{(0)}_{r \theta} = -\frac{1}{2} Ip \sin 2\theta + \frac{1}{r_2^2} (3M - A + \lambda_5 S A^*)\alpha_2 \sin 2\theta - \\
- \frac{1}{r_4^2} Mb_4 \sin 2\theta + \frac{1}{h} M(A + B)^{-1} \Lambda L(K_0^M(r) - K_4^M(r))\alpha_2 \sin 2\theta.
\]

141
\[P_{\theta r}^{(0)} = -\frac{1}{2} Ip \sin 2\theta + \frac{1}{r^2} (A - \lambda_5 S A^* + M) \alpha_2 \sin 2\theta - \]
\[-\frac{1}{r^4} M b_4 \sin 2\theta + \frac{1}{h} M (A + B)^{-1} \Lambda \mathcal{L}(K_0^M(r) - K_4^M(r)) \alpha_2 \sin 2\theta, \]
\[P_{r3}^{(1)} = A \left\{ \frac{h}{r^3} \tilde{a}_2 - \mathcal{L} \tilde{K}(K_3^M(r) + K_1^M(r)) \alpha_2 \right\} \cos 2\theta, \]
\[P_{3r}^{(1)} = (B - \Lambda) \left\{ \frac{h}{r^3} \tilde{a}_2 - \mathcal{L} \tilde{K}(K_3^M(r) + K_1^M(r)) \alpha_2 \right\} \cos 2\theta, \]

Similarly, \(P_{\theta \theta}^{(0)} \) and \(P_{\theta r}^{(0)} \) transform upon rotation in the spherical coordinate system as follows:

\[P_{\theta \theta}^{(0)} = \frac{1}{2} (A + M - \lambda_5 S A^*) A^{-1} B (\Lambda + M)^{-1} p + \]
\[+ 2 \left\{ \frac{1}{R^2} (A + M - \lambda_5 S A^*) a_2 + \frac{1}{h} M (A + B)^{-1} \Lambda \mathcal{L} K_2^M(R) \right\} \cos 2\theta, \]
\[P_{\theta r}^{(0)} = -\frac{2}{R^2} \lambda_5 S a_2 \sin 2\theta. \]

5. Векуа И. Н. Некоторые общие методы построения различных вариантов теории оболочек. М., Наука, 1982.

7. Векуа И.Н. Об одном методе расчета призматических оболочек. Тр. Тбилис. института, 1955, 21, 191-293.

10. Векуа И. Н. Теория тонких пологих оболочек переменной толщины. Тр. Тбилис. института, 1965, 30, 3-103.

13. Гольденвейзер А. Л. Построение приближенной теории оболочек при помощи асимптотического интегрирования уравнений теории упругости. ПММ, 27 (1963), 4, 593-608.

14. Гольденвейзер А. Л. Методы обоснования и уточнения теории оболочек. ПММ, 32 (1968), 4, 684-695.

15. Гордянин Д. Г. Некоторые неравенства для одного варианта теории тонких оболочек. Семинар ИПМ ТГУ, (1975), 10, 7-12.

17. Джавани Г. В. Решение некоторых задач для одного вырождающегося эллиптического уравнения и их приложения к призматическим оболочкам. Издательство ТГУ, Тбилиси, 1982.

19. Жгенти В. С., Хволос А. Р. Общее решение одной системы уравнений в частных производных. Дифф. уравнения, 18 (1982), 1, 17-29.

23. Меуаргия Т. В. Некоторые задачи концентрации напряжений для анизотропных пластин. Изд-во ТГУ, Тбилиси, 1977.

28. Рушкинский Я. Я. Феноменологическое описание взаимодействия в линейной теории смеси упругих сред. Прикл. мех. 22 (1986), 22, 90-96.

32. Сьярле Ф., Рабье П. Уравнения Кармана. М., Мир, 1983.

35. Хорошун Л. П., Сагаталов Н. С. Термоупругость двухкомпонентных смесей. Киев, Наук. думка, 1984.

70. Signorini A. Transformazione termoeastiche finite, Memoria 2, Annali Mat. Pura Appl. 30, 1-72, 1949.

