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Introduction

Symmetries play essential role in dynamical systems, because they
usually simplify analysis of evolution equations and often provide
quite elegant solution of problems that otherwise would be difficult
to handle. In Lagrangian and Hamiltonian dynamical systems special
role is played by Noether symmetries — important class of
symmetries that leave action invariant and have some exceptional
features. In particular, Noether symmetries deserved special attention
due to celebrated Noether's theorem, that established correspondence
between symmetries, that leave action functional invariant, and
conservation laws of Euler-Lagrange equations. This correspondence
can be extended to Hamiltonian systems where it becomes tighter and
more evident then in Lagrangian case and gives rise to Lie algebra
homomorphism between Lie algebra of Noether symmetries and

algebra of conservation laws (that form Lie algebra under Poisson

bracket).

Role of symmetries that are not of Noether type was suppressed for
quite a long time. However after some publications of Hojman,
Harleston, Lutzky and others (see [16], [36], [39], [40], [49]-[54]) it
became clear that non-Noether symmetries also can play important
role in Lagrangian and Hamiltonian dynamics. In particular according
to Lutzky [581], in Lagrangian dynamics there is definite
correspondence between non-Noether symmetries and conservation
laws. Moreover, unlike Noether's case, each generator of non-Noether
symmetry may produce whole family of conservation laws (maximal
number of conservation laws that can be associated with non-Noether
symmetry via Lutzky's theorem is equal to the dimension of
configuration space of Lagrangian system). This fact makes non-
Noether symmetries especially valuable in infinite dimensional
dynamical systems where potentially one can recover infinite
sequence of conservation laws knowing single generator of non-

Ncether symmetry.



Existence of correspondence between non-Noether symmetries and
conserved quantities, raised many questions concerning relationship
among this type of symmetries and other geometric structures
emerging in theory of integrable models. In particular one could
notice suspicious similarity between the method of constructing
conservation laws from generator of non-Noether symmetry and the
way conserved quantities are produced in either Lax theory, bi-
Hamiltonian formalism, bicomplex approach or Lenard scheme. It also
raised natural question, whether set of conservation laws associated
with non-Noether symmetry is involutive or not, and since it
appeared that in general it may not be involutive, the need of
involutivity criteria, similar to Yang-Baxter equation used in Lax
theory or compatibility condition in bi-Hamiltonian formalism and
bicomplex approach, emerged. It was also unclear how to construct
conservation laws in case of infinite dimensional dynamical systems
where volume forms used in Lutzky's construction are no longer well
defined. Some of these questions were addressed in papers [11]-[14],
while in the present manuscript we would like to summarize all these
issues and to provide some samples of integrable models that possess

non-Noether symmetries

Review is organized as follows. In first section we briefly recall some
aspects of geometric formulation of Hamiltonian dynamics. Further,
in second section, correspondence between non-Noether symmetries
and integrals of motion in regular Hamiltonian systems is discussed.
Lutzky's theorem is reformulated in terms of bivector fields and
alternative derivation of conserved quantities suitable for
computations in infinite dimensional Hamiltonian dynamical systems
is suggested. Non-Noether symmetries of two and three particle Toda
chains are used to illustrate general theory. In the subsequent section
geometric formulation of Hojman's theorem [36] is revisited and some
samples are provided. Section 4 reveals correspondence between non-
Noether symmetries and Lax pairs. It is shown that non-Noether
symmetry canonically gives rise to a Lax pair of certain type. Lax

pair is explicitly constructed in terms of Poisson bivector field and



generator of symmetry. Sample of Toda chains are discussed. Next
section deals with integrability issues. Analog of Yang-Baxter equation
that, being satisfied by generator of symmetry, ensures involutivity
of set of conservation laws produced by this symmetry, is introduced.
Relationship between non-Noether symmetries and bi-Hamiltonian
systems is considered in section 6. It is proved that under certain
conditions, non-Noether symmetry endows phase space of regular
Hamiltonian system with bi-Hamiltonian structure. We also discuss
conditions under which non-Noether symmetry can be 'recovered”
from bi-Hamiltonian structure. Theory is illustrated by sample of
Toda chains. Next section is devoted to bicomplexes and their
relationship with non-Noether symmetries Special kind of
deformation of De Rham complex induced by symmetry is constructed
in terms of Poisson bivector field and generator of symmetry.
Samples of two and three particle Toda chain are discussed. Section 8
deals with Froélicher-Nijenhuis recursion operators. It is shown that
under certain condition non-Noether symmetry gives rise to invariant
Frolicher-Nijenhuis operator on tangent bundle over phase space. The
last section of theoretical part contains some remarks on action of
one-parameter group of symmetry on algebra of integrals of motion.

Special attention is devoted to involutivity of group orbits.

Subsequent sections of present thesis provide samples of integrable
models that possess interesting non-Noether symmetries In particular
section 10 reveals non-Noether symmetry of n-particle Toda chain. Bi-
Hamiltonian structure, conservation laws, bicomplex, Lax pair and
Frolicher-Nijenhuis recursion operator of Toda hierarchy are
constructed using this symmetry. Further we focus on infinite
dimensional integrable Hamiltonian systems emerging in mathematical
physics. In section 11 case of nonlinear Schrédinger equation is
discussed. Symmetry of this equation is identified and used in
construction of involutive infinite sequence of conservation laws and
bi-Hamiltonian structure of nonlinear Schrodinger hierarchy. Section
12 deals with Korteweg-de Vries and modified Korteweg-de Vries

equations. Non-Noether symmetries of these equations produce



infinite number of conserved quantities in involution. The same
symmetries give rise to bi-Hamiltonian structure of KdV hierarchies.
Next section is devoted to non-Noether symmetries of integrable
systems of nonlinear water wave equations, such as dispersive water
wave system, Broer-Kaup system and dispersiveless long wave system.
Last section focuses on Benney system and its non-Noether symmetry,
that appears to be local, gives rise to infinite sequence of conserved
densities of Benney hierarchy and endows it with bi-Hamiltomian

structure.

1. Regular Hamiltonian systems

The basic concept in geometric formulation of Hamiltonian dynamics
is notion of symplectic manifold. Such a manifold plays the role of
the phase space of the dynamical system and therefore many
properties of the dynamical system can be quite effectively
investigated in the framework of symplectic geometry. Before we
consider symmetries of the Hamiltonian dynamical systems let us

briefly recall some basic notions from symplectic geometry.

The symplectic manifold is a pair (M, w) where M is smooth even

dimensional manifold and w is a closed
dw =0 (1)

and nondegenerate 2-form on M. Being nondegenerate means that

contraction of arbitrary non-zero vector field with w does not vanish
ixw =0 X =0 (2)

(here ix denotes contraction of the vector field X with differential
form). Otherwise one can say that w is nondegenerate if its n-th
outer power does not vanish (0" # 0) anywhere on M. In Hamiltonian
dynamics M is usually phase space of classical dynamical system with
finite numbers of degrees of freedom and the symplectic form w is
basic object that defines Poisson bracket structure, algebra of

Hamiltonian vector fields and the form of Hamilton's equations.

The symplectic form w naturally defines isomorphism between vector

fields and differential {-forms on M (in other words tangent bundle



TM of symplectic manifold can be quite naturally identified with
cotangent bundle T*M). The isomorphic map ®, from TM into T'M is
obtained by taking contraction of the vector field with

wa’ X — - ixw (3)

(minus sign is the matter of convention). This isomorphism gives rise
to natural classification of vector fields. Namely, vector field X, is
said to be Hamiltonian if its image is exact 1-form or in other words

if it satisfies Hamilton's equation

ixhw +dh =0 (4)
for some function h on M. Similarly, vector field X is called locally
Hamiltonian if it's image is closed {-form

ixw +u=0, du =0 (5)
One of the nice features of locally Hamiltonian vector fields, known
as Liouville's theorem, is that these vector fields preserve symplectic

form w. In other words Lie derivative of the symplectic form w along

arbitrary locally Hamiltonian vector field vanishes
wa=0<=>ixco+du=0, du=0 (6)

Indeed, using Cartan's formula that expresses Lie derivative in terms

of contraction and exterior derivative

Lx = ixd + diy (7)
one gets

Lxw = ixdw + dixw = dixw ‘ (8)

(since dw = 0) but according to the definition of locally Hamiltonian

vector Tfield
d.j.x(a) = - dU = O (9)

So locally Hamiltonian vector fields preserve w and vise versa, if
vector field preserves symplectic form « then it is locally

Hamiltonian.



Clearly, Hamiltonian vector fields constitute subset of locally
Hamiltonian ones since every exact 1-form is also closed. Moreover one
can notice that Hamiltonian vector fields form ideal in algebra of
locally Hamiltonian vector fields. This fact can be observed as follows.

First of all for arbitrary couple of locally Hamiltonian vector fields
X, Y we have Lxw = Lyw = 0 and
LxLy(D - Lnyw = L[x LY@ = 0 (10)

so locally Hamiltonian vector fields form Lie algebra (corresponding
Lie bracket is ordinary commutator of vector fields). Further it is

clear that for arbitrary Hamiltonian vector field X, and locally

Hamiltonian one Z one has
Lz(.O = O (11)
and

in_(*) +dh =0 (12)

that implies
LZ(ith + dh) = L[Z . xh]CO + ithzw + szh (13)

= L[Z ) xh](O + szh =0

thus commutator [Z , X;] is Hamiltonian vector field X[, or in other
words Hamiltonian vector fields form ideal in algebra of locally

Hamiltonian vector fields.

Isomorphism &, can be extended to higher order vector fields and

differential forms by linearity and multiplicativity. Namely,
O, (X AY) =D (X)A DY) (14)

Since ®, is isomorphism, the symplectic form w has unique counter
image W known as Poisson bivector field. Property dw = 0 together
with non degeneracy implies that bivector field W is also

nondegenerate (W™ # 0) and satisfies condition

[W, W]=0 (15)



where bracket [ , ] known as Schouten bracket or supercommutator, is
actually graded extension of ordinary commutator of vector fields to
the case of multivector fields, and can be defined by linearity and

derivation property
[C,ACoA .. ACL,SiAS; A ... AS = (16)
(- DP*AC, ,SJAC, ACa, A ...AC, A ... AC,
AStASy A .. ASGA.LAS,

where over hat denotes omission of corresponding vector field. In
terms of the bivector field W Liouville's theorem mentioned above can

be rewritten as follows
[Wu) , Wl=0<du=0 (17)

for each I-form u. It follows from graded Jacoby identity satisfied
by Schouten bracket and property [W , W] = O satisfied by Poisson
bivector field.

Being counter image of symplectic form, W gives rise to map @y,
transforming differential 1-forms into vector fields, which is

inverted to the map @, and is defined by
ch’ u — W(U); (DW(D(,.) = jid (18)
Further we will often use these maps.

In Hamiltonian dynamical systems Poisson bivector field is geometric
object that underlies definition of Poisson bracket — kind of Lie
bracket on algebra of smooth real functions on phase space. In terms
of bivector field W Poisson bracket is defined by

{f , g = W(df A dg) (19)

The condition [W , W] = O satisfied by bivector field ensures that for
every triple (f, g, h) of smooth functions on the phase space the
Jacobi identity

{fig , hi} + thif , git + {gth , 8} = 0. (20)



is satisfied. Interesting property of the Poisson bracket is that map
from algebra of real smooth functions on phase space into algebra of

Hamiltonian vector fields, defined by Poisson bivector field
f — Xy = W(df) (21)

appears to be homomorphism of Lie algebras. In other words
commutator of two vector fields associated with two arbitrary
functions reproduces vector field associated with Poisson bracket of

these functions
[Xs Xg] = Xir . g (22)

This property is consequence of the Liouville theorem and definition
of Poisson bracket. Further we also need another useful property of

Hamiltonian vector fields and Poisson bracket
{f , g} = W(df A dg) = Q)(Xf AN Xg) = fog = = Lxgg (23)

it also follows from Liouville theorem and definition of Hamiltonian

vector fields and Poisson brackets.

To define dynamics on M one has to specify time evolution of
observables (smooth functions on M). In Hamiltonian dynamical

systems time evolution is governed by Hamilton's equation

d
Leeth. B (24)
dt

where h is some fixed smooth function on the phase space called
Hamiltonian. In local coordinate frame z, bivector field W has the

form

d d (25)
W=W, — A —
8Zb aZc

and the Hamilton's equation rewritten in terms of local coordinates

takes the form

| oh (26)
Zp = Whe g



Note that functions W,, are not arbitrary, to ensure validity of
[W, W] = 0 condition they should fulfill restriction

. oW 4 IWpq OWhe (27)
wab

Z + wac + Wad =0
a=1 Jz, oz, oz,

and in the same time determinant of matrix formed by functions W,

should not wvanish to ensure that Poisson bivector field W s

nondegenerate.

2. Non-Noether symmetries

Now let us focus on symmetries of Hamilton's equation (24). Generally
speaking, symmetries play very important role in Hamiltonian
dynamics due to different reasons. They not only give rise to
conservation laws but also often provide very effective solutions to
problems that otherwise would be difficult to solve. Here we consider
special class of symmetries of Hamilton's equation called non-Noether
symmetries Such a symmetries appear to be closely related to many
geometric concepts used in Hamiltonian dynamies including bi-
Hamiltonian structures, Frolicher-Nijenhuis operators, Lax pairs and

bicomplexes.

Before we proceed let us recall that each vector field E on the phase
space  generates the one-parameter continuous  group of

transformations g, = et (here L denotes Lie derivative) that acts on

the observables as follows

1 28
() = e5(f) = £ + aLgf + —(aLp)?f + ... (28)
& 2

Such a group of transformation is called symmetry of Hamilton's

equation (24) if it commutes with time evolution operator

d d (29)
— gdf) = g(— *)
dt & & dt

in terms of the vector fields this condition means that the generator

E of the group g, commutes with the vector field W(h) = th , }, i. e.
[E, W(h)] = 0. (30)

11



However we would like to consider more general case where E is time
dependent vector field on phase space. In this case (30) should be
replaced with

9 (31)
—E = [E, W(h)].
ot

Further one should distinguish between groups of symmetry
transformations generated by Hamiltonian, locally Hamiltonian and
non-Hamiltonian vector fields. First kind of symmetries are known as
Noether symmetries and are widely used in Hamiltonian dynamics due
to their tight connection with conservation laws. Second group of
symmetries is less interesting but locally they also lead to
conservation laws. While third group of symmetries that further will
be referred as non-Noether symmetries seems to play important role
in integrability issues due to their remarkable relationship with bi-
Hamiltonian structures and Frélicher-Nijenhuis operators. Thus if in
addition to (30) the vector field E does not preserve Poisson bivector

field [E, W] # O then g, is called non-Noether symmetry.

Now let us focus on non-Noether symmetries We would like to show
that the presence of such a symmetry essentially enriches the
geometry of the phase space and under the certain conditions can
ensure integrability of the dynamical system Before we proceed let
us recall that the non-Noether symmetry leads to a number of
integrals of motion. More precisely the relationship between non-
Noether symmetries and the conservation laws is described by the
following theorem. This theorem was proposed by Lutzky in [51].

Here it is reformulated in terms of Poisson bivector field.

------------------------------------------------------------------------------------------------------------------------

§Theorem 1. Let (M , h) be regular Hamiltonian system on the 2n-!
idimensional Poisson manifold M. Then, if the vector field Ei

generates non-Noether symmetry, the functions

Wk A wr -~k (32)5
Yyl = o k=12, .. n 5

12



Proof: By the definition
Wk A wn ~k = yldyn (33)

(definition is correct since the space of 2n degree multivector fields
on 2n degree manifold is one dimensional). Let us take time derivative

of this expression along the vector field W(h),

d . d 34
(_i__wk A Wn - k _ (d__ Y(k))wn + Y(k)[w(h) ’ W] (34)
t t

or

d 35
K(— W) A WA Wk (35)
t

+(n — K)[W(h) , W] A Wk A wn— k-1

d
= (d_ Y(k))wn + nY(k)[w(h) ’ W] A WP |
t

but according to the Liouville theorem the Hamiltonian vector field

preserves W i. e.

d
S W= W), Wl =0 (36)
dt

hence, by taking into account that

d d
—E= —E + [W(h) ,E]l =0 (87)
dt ot

we get
d d d (38)

—W = —[E,Wl=[—E, W]+ [E[Wh), W]] =0.
dt dt dt

and as a result (35) yields

i Y(k)wn =0 (39)
dt

but since the dynamical system is regular (W" # 0) we obtain that the

functions Y are integrals of motion.

........................................................................................................................................................................................................

13



Remark 1. Instead of conserved quantities Y& . Y™ the solutions

¢y ... ¢, of the secular equation
(W —cW)" =0 (40)

can be associated with the generator of symmetry. By expanding

expression (40) it is easy to verify that the conservation laws Y% can
be expressed in terms of the integrals of motion ¢; ... ¢, in the

following way

(n — k) k!
Y(k) - n 2 o e (41)

v i
n: i<ip<.. <y

i2 e Kk

Note also that conservation laws Y can be also defined by means of

symplectic form w using the following formula

(L) A " ~K (42)
Yl = k=12, ..n
wn
while ¢; ... ¢, conservation laws can be derived from the secular
equation
(Lgw — cw)” = 0 (43)

However all these expressions fail in case of infinite dimensional

Hamiltonian systems where the volume form
Q=" (44)

does not exist since n = 00. But fortunately in these case one can

define conservation laws using alternative formula
C(k) = iwk(LE(O)k (45)

as far as it involves only finite degree differential forms (Lgw)© and
well defined multivector fields WX, further we will use this
expression in construction of infinite sequence of conservation laws in
Korteweg-De Vries, modified Korteweg-De Vries and nonlinear

Schrédinger equations. Note that in finite dimensional case the
sequence of conservation laws C® js related to families of

conservation laws Y¥) and ¢, in the following way

14



|
C(k) = Z Ci Ci vee Ci = ahi Y(k) (46)
b * (n - k)MKk!

i1<ia<.. iy
Note also that by taking Lie derivative of known conservation along

the generator of symmetry E one can construct new conservation laws

dY-L Y—O:dLY-L LeY =LgLx Y =0 40
dt X qt XyE ELXq,

since [E , X1 = 0.

.......................................................................................................................................................................................................

Remark 2. Besides continuous non-Noether symmetries generated by
non-Hamiltonian vector fields one may encounter discrete non-
Noether symmetries — noncannonical transformations that doesn't

necessarily form group but commute with evolution operator

d d (48)
— g(f) = g(== 1)
dt 8 8 dt
Such a symmetries give rise to the same conservation laws
k n-k
oo B AW Keto o (49)
wn

........................................................................................................................................................................................................

Sample. Let M be R* with coordinates z;, z,, z3, z4, and Poisson bivector
field

0 0 d ) (50)
W=—A + AN
9z dz3 9z, 0z,

and let's take

h = -1'212 + 1222 +eB ™ 51
2 2

This is so called two particle non periodic Toda model. One can check
that the vector field

4
) (52)
E= ) E —
a=1 aza

with components

15



{ t (53)

2
1 . —
E2 = _222 + 262‘3_ 4+ ‘E(Zl + zz)ez3 Z
1 t

E3 = 221 + EZZ + _(212 + B~ Z‘)

[3

E S
=Zyg — —zy + —(z,° + €7
4 2 21 N 2

satisfies (31) condition and as a result generates symmetry of the
dynamical system. The symmetry appears to be non-Noether with
Schouten bracket [E , W] equal to

. 0 d ) %] (54)
W = [E s W] =74 A\ + Zo — N —
0z 9z3 a9z, 9z,
d a' 0 0
+eRTH A +— A —

0z dz,, 9z 0Z4
calculating volume vectorr fields WX A W™~k gives rise to

3 9 3 2 (55)
WAWS=-2 A AN— AN —

3
>
g
I
|
&
+
o
>
>
|
>

and the conservation laws associated with this symmetry are just

WAW (56)
YW = —— = —(z, + z,)

WAW 2
(2) WAW Z3 —
Y& ———— =714z, — B H

W AW

It is remarkable that thie same symmetry is also present in higher

dimensions. For example iin case when M is R® with coordinates

Zy, Zp, 23, Z4, Z5, Zgs (87)

16



Poisson bivector equal to

d ) d d d d (58)
W = A + A + N —
9z 0z4 9z dz5 9z3 9zg

and the following Hamiltonian

h = 1212 + 1222 + 1232 + et " B+ BT B (59)

2 2 2

we still can construct symmetry similar to (53). More precisely the

vector field

6
9 (60)
E= 2 E —
a=1 aZa
with components specified as follows
1 _ _ 61)
El = ‘5212 — 2e "B — _2‘(21 + Zz)ez4 %
| t
By = gl + 364 T = TR 4 g 4zt
|
E; = —232 +2e57 % + —'(22 + 23)325 T %
2 2
o1 t (62)
Ey=3z  + -z, + -2-z3 + —(z,%2 + ¥~ B)
1 i t
‘ E5 = 222 - -z + —z3 + —'(222 + eM B + 57 &)
2 2
| | t _
Es =123~ —Zy — —Zp t 5(232 + e Ze)

satisfies (31) condition and generates non-Noether symmetry of the
dynamical system (three particle non periodic Toda chain). Calculating

Schouten bracket [E , W] gives rise to expression



. ] 2 2 a ) 9 (63)
W=[E,W] =2, — AN—+2p — A — +2z23 — A —

9z 0Z4 9z, J9z5 9Z3 dzg
d d ) )
9z, 9z, 9z, dz3

o %) d d d 0
+ — A + A + A —
823 82* 824 825 825 826

Volume multivector fields WX A W™ ~ kX can be calculated in the
manner similar to R*! case and give rise to the well known

conservation laws of three particle Toda chain.

WAWAW (64)
Y(1)=_(ZI+ZZ+Z3) =
6 WAWAW
1 WAWAW
Y(2)=—(2122+ZIZ3+2223 —ez‘_ZS—eZS_ZG) =
WAWAW
WAWAW
Y(3)=zlzzz3—z3e1 5 — 7878 =

...................................................................................................................................................................................................

3. Non-Liouville symmetries

Besides Hamiltonian dynamical systems that admit invariant
symplectic form w, there are dynamical systems that either are not
Hamiltonian or admit Hamiltonian realization but explicit form of
symplectic structure w is unknown or too complex. However usually
such a dynamical systems possess invariant volume form Q which like
symplectic form can be effectively used in construction of
conservation laws. Note that volume form for given manifold is
arbitrary differential form of maximal degree (equal to the
dimension of manifold). In case of regular Hamiltonian systems n-th
outer power of the symplectic form  naturally gives rise to the

invariant volume form known as Liouville form
Q=" (65)

and sometimes it is easier to work with Q rather then with symplectic
form itself. In generic Liouville dynamical system time evolution is

governed by equations of motion

18



d (66)
—f = X(f)
dt
where X is some smooth vector field that preserves Liouville volume
form Q
d (67)
—Q = Lx.Q =0
dt

Symmetry of equations of motion still can be defined by condition

d d (68)
— 8uf) = g{— 1)

at &7 By

that in terms of vector fields implies that generator of symmetry E

should commute with time evolution operator X
[E, X]=0 \69)

Throughout this chapter symmetry will be called non-Liouville if it is

not conformal symmetry of Q, or in other words if
LEQ # cQ (70)

for any constant c. Such a symmetries may be considered as analog of
non-Noether symmetries defined in Hamiltonian systems and
similarly to the Hamiltonian case one can try to construct
conservation laws by means of generator of symmetry E and
invariant differential form Q. Namely we have the following
theorem, which is reformulation of Hojman's theorem in terms of

Liouville volume form.

------------------------------------------------------------------------------------------------------------------------

;Theorem 2. Let (M, X, Q) be Liouville dynamical system on theé
ismooth manifold M. Then, if the vector field E generates non- |
i Liouville symmetry, the function '
L (71)
O :

T =

{is conservation law.

- - - - .. e - .- . - - - = Y = e N P R R e T R T R T M T e T A T P A N T T e = = - —————— = == W

Proof: By the definition

19



L:Q = JQ. (72)

and J is not just constant (again definition is correct since the space
of volume forms is one dimensional). By taking Lie derivative of this

expression along the vector field X that defines time evolution we get
LxLEQ = L[x , E]Q + LELxQ = Lx(-TQ) = (Lx-T)Q + \TLxQ (73)

but since Liouville volume form is invariant LxQ = O and vector field

0 commutation

E is generator of symmetry satisfying [E , X]

relation we obtain

(LxT)Q = 0 (74)
or

d (75)

_.T = Lx-T = 0

dt

........................................................................................................................................................................................................

Remark 3. In fact theorem is valid for larger class of symmetries
Namely one can consider symmetries with time dependent generators.
Note however that in this case condition [E , X] = O should be replaced
by

(76)

9
—E = [E, X]
ot

Note also that by calculating Lie derivative of conservation law J
along generator of the symmetry E one can recover additional

conservation laws

........................................................................................................................................................................................................

Sample. Let us consider symmetry of three particle non periodic Toda
chain. This dynamical system with equations of motion defined by the

vector field

gy O _ o O _, 0 (78)
X=— et B — + (et "5 — el %) — 4 g5~ % —
821 822 823
9 d d
+z, — + 2y — + 727 —
1824‘ 2325 3826

N



possesses invariant volume form
Q = dz; A dz, A dzz A dzy A dzs A dzg (79)

One can check that Q is really invariant volume form, i.e. Lie

derivative of Q along X vanishes

d (80)
_Q = LxQ
dt

[ 90Xy 9X, 9X3 09Xy, 09X5 9Xg jl
= + + + + + Q=0
9z 9z, dz3 0z, dz5 dzg

The symmetry (61) is clearly non-Liouville one as far as

[aEl 9E, ©OE; ©OE, ©oEs oF, }Q (81)

+ + + + +

LEQ =
dzy 9z, 9dz3 9Jzy, OJz5 OJzZg

= (Zl + 1z, + Z3)d21 A\ de A dZ3 AN dZ4 VAN dZs AN d.Zs
=(Zl+Zz+Z3)Q

and main conservation law associated with this symrnetry via Theorem

2 is total momentum

_ Lg0 (82)

J =7z + 2, + 23
Q

Other conservation laws can be recovered by taking Lie derivative of

J along generator of symmetry E, in particular
1 1 1 (83)

TO = LT = =22+ =22+ -z + 4 "B+ 5~ %
2

1
3“(2) = LE.T(I) - E (213 + 223 + 233)

........................................................................................................................................................................................................

4. Lax Pairs

Presence of the non-Noether symmetry not only leads to a sequence
of conservation laws, but also endows the phase space with a number

of interesting geometric structures and it appears that such a

21



symmetry is related to many important concepts used in theory of
dynamical systems One of the such concepts is Lax pair that plays
quite important role in construction of completely integrable models.
Let us recall that Lax pair of Hamiltonian system on Poisson manifold
M is a pair (L , P) of smooth functions on M with values in some Lie

algebra g such that the time evolution of L is given by adjoint action

d (84)
—L=[L, Pl =- adpL
dt

where [ , ] is a Lie bracket on g. It is well known that each Lax pair
leads to a number of conservation laws. When g is some matrix Lie

algebra the conservation laws are just traces of powers of L

{ (85)
I(k) - — TI‘(Lk)
2
since trace is invariant under coadjoint action
d 1 d | d k d (86)
—I0 = — — Tr(LX) = - Tr(— LK) = — Tr(Lk~1— L)
dt 2 dt 2 dt 2 dt
k {

= Tr(Lx " [L, P]) = > Tr([LK, P]) = 0

It is remarkable that each generator of the non-Noether symmetry
canonically leads to the Lax pair of a certain type. Such a Lax pairs
have definite geometric origin, their Lax matrices are formed by
coefficients of invariant tangent valued 1-form on the phase space. In
the local coordinates z,, where the bivector field W, symplectic form

w and the generator of the symmetry E have the following form

0 d (87)
W=ZWab A w=2wabdza/\dzb
ab 0z, 0Jz ab
d
E = Z E, —
a aza

corresponding Lax pair can be calculated explicitly. Namely we have

the following theorem:

22



----------------------------------------------------------------------------------------------------------------------- -

i Theorem 3. Let (M , h) be regular Hamiltonian system on the 2n-i
‘dimensional Poisson manifold M. Then, if the vector field E on M:
igenerates the non-Noether symmetry, the following 2nX2n matrix§

évalued functions on M

AW 9E 9E 88)
Lab =Zwad[Ec db—wbc——ddrwdc——?} =
de 9z, 9z, 9z,
oW,. oh 9%h
Pab = Z [ e + Wbc :l
o dz, Oz, 9zZ.Z,

------------------------------------------------------------------------------------------------------------------------

Proof: Let us consider the following operator on a space of 1-forms
Re(u) = @,((E , @w(u)) - Lgu (89)

(here ®y and @, are maps induced by Poisson bivector field and
symplectic form). It is remarkable that R appears to be invariant
linear operator. First of all let us show that Rg is really linear, or in
other words, that for arbitrary 1-forms u and v and function f

operator Rg has the f ollowing properties

Re(u + v) = Rg(u) + Rg(v) (90)
and

Re(fu) = fRg(u) (91)

First property is obvious result of linearity of Schouten bracket, Lie

derivative and maps ®y, ®,. Second property can be checked directly
Re(fu) = O, ([E , dw(fu)]) — Le(fu) (92)
= @ ([E , TOw(w]) — (Lgflu — fLgu = O ((LEF)P wluw))
+ @ (F[E , Dwl(w)]) — (Lgflu — fLgu = Lgf® Dyw(u)
+ TOL([E , Dw(w)]) — (Lgflu — fLgu
= £(@,([E , Dw(w]) - Lgu) = fRg(u)

as far as ®_ Pw(u) = u. Now let us check that Rg is invariant operator
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d _ — (93)
;RE = Lx,Rg = Lx,(®,LgPw — Lg)

= ®OyLix, . gPw ~ Lix,, g =0

becausie, being Hamiltonian vector field, X; commutes with maps @y,
@, (thiis is consequence of Liouville theorem) and commutes with E as
far as E generates the symmetry [X;, E] = 0. In the terms of the local

coordimates Rg has the following form

_ 5 (94)
Rg = D, Ly, dz, ® —
ab 9z;,

and thie invariance condition

d— - (95)
;RE = Lw@wRg =0
yields
d_ _d 9 (96)
—Rg = — 2 Ly dz, ® —
d d o
= Z —Lab dza ® — + 2 Lab (Lw(h)dza) K —
ap L dt Zpb  ab 9z,
5] d o)
+ Z Labdza®[LW(h) —:]= Z I:_ Lab}dza® —
dW,4 oh 9
+ Y L, — —dz, ® —
abed dz, 9z4 9z,
9%h 9
+ 2 Ly Wa dz, ® —
abed azcazd azb
oW, 9h 3 a%h 3
+ Z I-'ab - dza ® — + Z I-‘ab ch dza ® —
abed 9z, 9z4 9z abed 92,9074 oz,
d )
= Z L Lab + Z (Pachb - LacPcb) dza @ — =0
ab dt c azb

or in matrix notations
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d
SL-mw.m o7)
dt

So, we have proved that the non-Noether symmetry canonically yields
a1 Lax pair on the algebra of linear operators on cotangent bundle over

tthe phase space.

........................................................................................................................................................................................................

Remark 4. The conservation laws (85) associated with the Lax pair (88)

c:an be expressed in terms of the integrals of motion c¢; in quite simple

way:

1 98)
1) = > Tr(LY) = 2, c (

i
This correspondence follows from the equation (40) and the definition
of the operator Rg (89). One can also write down recursion relation

t:hat determines conservation laws I‘® in terms of conservation laws

C)(k)
m-—1
I(m) + (— l)mmC(m) + 2 (- 1)k I(m - k)C(k) =0 (99)
k=1

.........................................................................................................................................................................................................

Siample. Let us calculate Lax matrix of two particle Toda chain
associated with non-Noether symmetry (§3). Using (88) it is easy to

clheck that Lax matrix has eight nonzero elements

zy O 0 —eh T (100)
0 Zy eB 0
L =
0 1z 0
-1 0 0 Zy

wrhile matrix P involved in Lax pair
d (101)
—L=[L, Pl

dt

has the following form
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0 0 1
0 0 0

P = - _
—eB L el T % 0
eza"lf _e23—14 0

The c¢conservation laws

©c O - O

—

mome:ntum and energy of two particle Toda chain

|
0= - Tr(l) =z, + z,

2

1
1?2 = - Tr(LY) = 2,2 + 7,2 + 2e®~ &

(102)

associated with this Lax pair are total

(103)

Similairly one can construct Lax matrix of three particle Toda chain, it

has 16> nonzero elements

zy O 0 0 —en™ B 0
0 z, O no b 0 — el B
0 0 z3 0 e’ % 0
o o -1 -1 Zy 0 0
i 0 -1 0 2
R | 0 0 0 Z3
with rmatrix-P
| 0 0 0 1
0 0 0 0
0 0 0 0
p= — el 5B e~ B 0 0
4B — UL B L% G B-L ()
0 e % —es" % (0
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(105)



Correspponding conservation laws reproduce total momentum, energy

and seccond Hamiltonian involved in bi-Hamiltonian realization of Toda

chain
i 106)
IV = E Tr(L) = z; + z, (
1
1@ = 5 Tr(L?) = 2,2 + 7,2 + 252 + 2e% ™ % + 2e% ™ %
1
I(3) = _é_ TI‘(LS) = Zl3 + Z23 + Z33

+ 3(21 + Zz)ez4 T+ 3(22 + z3)e15 Tk

.........................................................................................................................................................................................................

5. Inveolutivity of conservation laws

Now lett us focus on the integrability issues. We know that n integrals
of mobtion are associated with each generator of non-Noether
symmettry, in the same time we know that, according to the Liouville-
Arnold theorem, regular Hamiltonian system (M, h) on 2n dimensional
symplecctic manifold M is completely integrable (can be solved
complettely) if it admits n functionally independent integrals of
motion in involution. One can understand functional independence of
set of cconservation laws ¢y, ¢; ... ¢, as linear independence of either
differerntials of conservation laws de;, de; ... dc, or corresponding
Hamiltopnian vector fields X., X, ... X, . Strictly speaking we can say
that cornservation laws c¢j, c; ... ¢, are functionally independent if
Lesbeguee measure of the set of points of phase space M where
differenntials dcy, dec, ... de, become linearly dependent is zero.
Involutitvity of conservation laws means that all possible Poisson

bracketss of these conservation laws vanish pair wise

te;, ¢ =0 i,j=1.n (107)

In termas of the vector fields, existence of involutive family of n
functiomally independent conservation laws ¢y, ¢, ... ¢, implies that
X.. ~span

correspoonding Hamiltonian vector fields X, X
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Lagrangian :subspace (isotropic subspace of dimension n) of tangent

space (at eacth point of M). Indeed, due to property (23)
fe;, ¢} = (X, , ch) =0 (108)

thus space sppanned by X., X, ... X, is isotropic. Dimension of this
space is n so it is Lagrangian. Note also that distribution X, , X, ... X,

is integrable: since due to (22)
[Xe, o XeJ = Xge,, ey = 0 (109)

and accordin)g to Frobenius theorem there exists submanifold of M
such that diistribution X., X, .. X, spans tangent space of this
submanifold.. Thus for phase space geometry existence of complete
involutive se:t of integrals of motion implies existence of invariant

Lagrangian siubmanifold.

Now let us llook at conservation laws YV, Y@ . Y™ associated with
generator oif non-Noether symmetry. Generally speaking these
conservation laws might appear to be neither functionally
independent nor involutive. However it is reasonable to ask the
question — wthat condition should be satisfied by the generator of the
non-Noether :symmetry to ensure the involutivity (fY® | Y™} = Q) of
conserved quantities? In Lax theory situation is very similar — each
Lax matrix leecads to the set of conservation laws but in general this
set is not invcolutive, however in Lax theory there is certain condition
known as Claissical Yang-Baxter Equation (CYBE) that being satisfied
by Lax matri:x ensures that conservation laws are in involution. Since
involutivity of the conservation laws is closely related to the
integrability, it is essential to have some analog of CYBE for the
generator of non-Noether symmetry. To address this issue we would

like to proposie the following theorem.
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------------------------------------------------------------------------------------------------------------------------- -

iTheorem 4. If the vector field E on 2n-dimensional Poisson manifoldi

EM satisTies tthe condition

§and W bivecctor field has maximal rank (W" # 0) then the functions§

§(32) are in irnvolution

{Y(k):) ’ Y(m)} =0 (111)5

Proof: First of all let us note that the identity (15) satisfied by the

Poisson bivecctor field W is responsible for the Liouville theorem
[W,, Wl=0 & LwinW = [W(f) , W] =0 (112)

that follows. from the graded Jacoby identity satisfied by Schouten
bracket. By itaking the Lie derivative of the expression (15) we obtain

another usefrtul identity

Lelwy , W] = [E[W , WI]] (113)

= [[EI, W1 W] + [W[E, W]l = 2[W , W] = 0.
This identity/ gives rise to the following relation

W, Wl=0 & [W(F) , W] = = [W, W(f)] (114)
and finally ccondition (110) ensures third identity

W, Wl=0 (115)
yielding Liouwville theorem for \Y

W, Wl=0 < [W(f), W] =0 (116)
Indeed

[W, Wl=I[E, WIW] = [[W , E]W] (117)

= — [[[E, WIW] = — [[E[E , WI]W] = 0

Now let us cconsider two different solutions c¢; # c; of the equation

(40). By taking the Lie derivative of the equation
(W- W =0 (118)
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along the vector fields W(c;) and Wi(c;) and using Liouville theorem for

W and W bivectors we obtain the following relations

(W = ;W)™ ™ MLy)W — {c; , e3W) =0, (119)
and

(W = ¢;W)" ™ HeLyyW + fej , e W) =0, (120)
where

fe; , ca = Wlde; A de)) (121)

is the Poisson bracket calculated by means of the bivector field W.
Now multiplying (119) by c¢; subtracting (120) and using identity (114)

gives rise to

(fe; . e — cile; cJ-})(W — W) " lw =0 (122)
Thus, either

te;, g —ciley, e} =0 (123)

or the volume field (W — ¢,W)® = 'W vanishes. In the second case we
can repeat (119)-(122) procedure for the volume field (W — ¢,W)" ~ 1w
yielding after n iterations W" = O that according to our assumption
(that the dynamical system is regular) is not true. As a result we

arrived at (123) and by the simple interchange of indices i <> j we get
{c; , cj}. - cj{ci , cj} =0 (124)

Finally by comparing (123) and (124) we obtain that the functions c;

are in involution with respect to the both Poisson structures (since

c; # ¢
fc, . cj},. = {c; , cJ} =0 (125)

........................................................................................................................................................................................................

Remark 5. Theorem 4 is useful in multidimensional dynamical systems

where involutivity of conservation laws can not be checked directly.

.......................................................................................................................................................................................................
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6.. Bi-Hamiltonian systems

Fuirther we will focus on non-Noether symmetries that satisfy
coondition (110). Besides yielding involutive families of conservation
layws, such a symmetries appear to be related to many known
gezometric structures such as bi-Hamiltonian systems and Frdlicher-
Niijenhuis operators (torsionless tangent valued differential 1-forms).
The relationship between non-Noether symmetries and bi-Hamiltonian
stiructures was already implicitly outlined in the proof of Theorem 4.

Noow let us pay more attention to this issue.

Or-iginally bi-Hamiltonian structures were introduced by F. Magri in
an:alisys of integrable infinite dimensional Hamiltonian systems such
as Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV)
hieerarchies, Nonlinear Schrédinger equation and Harry Dym equation.
Simce that time bi-Hahmiltonian formalism is effectively wused in
comnstruction of involutive families of conservation laws in integrable

moodels

Ge:neric bi-Hamiltonian structure on 2n dimensional manifold consists
outt of two Poisson bivector fields W and W satisfying certain
commpatibility condition [W , W] = 0. If, in addition, one of these
bivsector fields is nondegenerate (W" # 0) then bi-Hamiltonian system
is ccalled regular. Further we will discuss only regular bi-Hamiltonian
sysstems Note that each Poisson bivector field by definition satisfies
comdition (15). So we actually impose four restrictions on bivector
fiellds W and W

[W. W]l=[W,Wl=[W,W]=0 (126)
andi
Wt #0 (127)

Durring the proof of Theorem 4 we already showed that bivector
fiellds W and W = [E , W] satisfy conditions (126) (see (112)-(116)), thus

we can formulate the following statement



------------------------------------------------------------------------------------------------------------------------

‘Theorem 5. Let (M , h) be regular Hamiltonian system on the 2n-:
:dimensional manifold M endowed with regular Poisson bivector field
:W. Then, if the vector field E on M generates the non-Noether:

Esymmetry, and satisfies condition

[(E[E , WIIW] = 0, (126)}
;the following bivector fields on M
W, W =[E, W] (129)5
form invariant bi-Hamiltonian systemé

------------------------------------------------------------------------------------------------------------------------

Sample. One can check that the non-Noether symmetry (563) satisfies
condition (110) while bivector fields

9 d d 9 (130)
W = A + A

9z dzz 9dzp,  9Jz4

and
) ) ) ) d (131)
W = [E, W] = z; A + 2, A
821 823 822 824
d d ) d

+eB ™ H A + A

9z dz, 0Jz3 9z

form bi-Hamiltonian system [W , W] = [W , W] = [W , W] = 0.
Similarly, one can recover bi-Hamiltonian system of three particle

Toda chain associated with symmetry (61). It is formed by bivector
fields

d ) ) d ) o (132)

and



. d 2 9 9 d 9 (133)
W =[E, W] =2z A +z2p — A — +z23— A —
9z 9z, 9z, Jdz5 dz3  9zg
) ) 0 d
+ed "B — AN—+eb % A
9z, 9z, dz, 973

+ — A + A + A —
dz3 oz, 9Jz4 dzs Jz5  JZg

.........................................................................................................................................................................................................

In terms of differential forms bi-Hamiltonian structure is formed by
couple of closed differential 2-forms: symplectic form w (such that
dw = 0 and w" # 0) and 0" = Lgw (clearly dw® = dLgw = Lgdw = 0). It is

important that by taking Lie derivative of Hamilton's equation

ix,w +dh =0 (134)
alongg the generator E of symmetry

Lelix, + dh) =g xgo + ix,Lgw + Lgdh = ix w* + dLgh = 0(1395)
one ©obtains another Hamilton's equation

ix,w* +dh* =0 (136)

where h* = Lgh. This is actually second Hamiltonian realization of
equattions of motion and thus under certain conditions existence of
non-Noether symmetry gives rise to additional presymplectic
structure w* and additional Hamiltonian realization of the dynamical
system. In many integrable models admitting bi-Hamiltonian
realization (including Toda chain, Korteweg-de Vries hierarchy,
Nonlinear Schrédinger equation, Broer-Kaup system and Benney
system) non-Noether symmetries that are responsible for existence of
bi-Hamiltonian structures has been found and motivated further
investigation of relationship between symmetries and bi-Hamiltonian
structures. Namely it seems to be interesting to know whether in
general case existence of bi-Hamiltonian structure is related to non-
Noether symmetry. Let us consider more general case and suppose that

we have couple of differential 2-forms w and w" such that

dw = dw* = 0, o #0 (137)

33



ix,w + dh =0 (138)

and
ixhw’“ +dh*=0 (139)

The question is whether there exxists vector field E (generator of non-
Noether symmetry) such that [[E., X;] = 0 and w* = Lgw.

The answer depends on w*. Name:ly if w* is exact form (there exists 1-
form 6% such that w* = d8%) thien one can argue that such a vector
field exists and thus any exact: lbi-Hamiltonian structure is related to
hidden non-Noether symmetry. "To outline proof of this statement let

us introduce vector field E* def’itned by
ipw = o* (140)

(such a vector field always existt because w is nondegenerate 2-form).

By construction

Lp w = 0* (141)
Indeed

Lpw = digw + ipdw = dB* = »* (142)
And

ifer, x @ = Lp(ix, @) — ix Lgsew = — d(E*(h) - h*) = — dh' (143)

In other words [X;, , E*] is Hami.lttonian vector field
[Xh s E] = Xh' (1‘1‘1’)

One can also construct locallyy Hamiltonian vector field X, that
satisfies the same commutatiorn relation. Namely let us define

function (in general case it can lbee done only locally)

t
glz) = I h'dt (145)
0

where integration along solutiom of Hamilton's equation, with fixed
origin and end point in z(t) = z,, is assumed. And then it is easy to

verify that locally Hamiltonian ‘vector field associated with g(z), by
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construction, satisfies the same commutation relations as E* (namely
[Xh . Xgl = Xy). Using E* and X, one can construct generator of non-
Noether symmetry — non-Hamiltonian vector field E = E' - X,

commuting with X} and satisfying
Lgw = Lpo ~ Ly 0 = Lpo = o (146)

(thanks to Liouville's theorem Lxw = 0. So in case of regular
Hamiltonian system every exact bi-Hamiltonian structure is naturally
associated with some (non-Noether) symmetry of space of solutions. In
case when bi-Hamiltonian structure is not exact (w* is closed but not

exact) then due to
(;\)’lE = LEOJ = diEw + lEdCO = dlEOJ (147)

it is clear that such a bi-Hamiltonian system is not related to
symmetry. However in all known cases bi-Hamiltonian structures seem

to be exact.

7. Bidifferential calculi

Another important concept that is often used in theory of dynamical
systems and may be related to the non-Noether symmetry is the
bidifferential calculus (bicomplex approach). Recently A. Dimakis and
F. Miiller-Hoissen applied bidifferential calculi to the wide range of
integrable models including KdV hierarchy, KP equation, self-dual
Yang-Mills equation, Sine-Gordon equation, Toda models, non-linear
Schrodinger and Liouville equations. It turns out that these models can
be effectively described and analyzed using the bidifferential calculi
[17] [24]. Here we would like to show that each generator of non-
Noether symmetry satisfying condition [[E[E , W]]W] = O gives rise to

certain bidifferential calculus.

Before we proceed let us specify what kind of bidifferential calculi
we plan to consider. Under the bidifferential calculus we mean the

graded algebra of differential forms over the phase space

[00)

Q = U Q(k)
k=0

(148)
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(Q") desnotes the space of k-degree differential forms) equipped with a

couple of differential operators

d, ¢: Q¥ — Qlk+? (149)

satisfysing d®> = ¢* = dd + dd = O conditions (see [24]). In other words
we hawe two De Rham complexes M, Q, d and M, Q, 4 on algebra of
differeential forms over the phase space. And these complexes satisfy
certain1 compatibility condition — their differentials anticommute
with eeach other dd + dd = 0. Now let us focus on non-Noether
symmeetries It is interesting that if generator of the non-Noether
symmeetry satisfies equation [[E[E , W]]JW] = 0 then we are able to
construwct an invariant bidifferential calculus of a certain type. This

construuction is summarized in the following theorem:

------------------------------------------------------------------------------------------------------------------------ -

i Theoreem 6. Let (M , h) be regular Hamiltonian system on the Poisson |
rmanifcold M. Then, if the vector field E on M generates the non-:

ENoetheer symmetry and satisfies the equation

' [[E[E , WIIW] = 0, (1 50)?

;the diffferential operators
du = &, ([W , Oy (uw)]) (151)5

du = &_([E , Widy(w)) | (152)

§form iinvariant bidifferential calculus (d? = d2 = dd + dd = 0) over the|

igradedi algebra of differential forms on M.

..........................................................................................................................

Proof: First of all we have to show that d and d are really
differerntial operators , i.e., they are linear maps from Q% jnto Qlk * 1),
satisfy  derivation property and are nilpotent (d? = d¢*> = 0). Linearity is
obvious: and follows from the linearity of the Schouten bracket [ , ]
and ®y,, &, maps. Then, if u is a k-degree form ®y maps it on k-
degree ;multivector field and the Schouten brackets [W , ®yw(u)] and
[[E , W]dy(u)] result the k + 1-degree multivector fields that are
mapped!| on k + 1-degree differential forms by ®,. So, d and d are

Q(k) Q(k + 1)

linear nmaps from into . Derivation property follows from
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the same feature of the Schouten bracket [, ] and linearity of ®y and
®, maps. Now we have to prove the nilpotency of d and d. Let us

consider d%u
d?u = @, ([W , Dyl ([W , ®y ()] (153)
= & ([WIW , oyl =0

as a result of the property (112) and the Jacoby identity for [, ]

bracket. In the same manner
d?u = & ([[W , EIl[W , El®yw(w]l) =0 (154)

according to the property (116) of [W , E] = W and the Jacoby
identity. Thus, we have proved that d and & are differential operators
(in fact d is ordinary exterior differential and the expression (151) is
its well known representation in terms of Poisson bivector field). It
remains to show that the compatibility condition dd + dd = 0 is
fulfilled. Using definitions of d, d and the Jacoby identity we get

(dd + dd)(u) = @, ([[[W , EJW]®y(u)]) = 0 (155)

as far as (114) is satisfied. So, d and & form the bidifferential calculus
over the graded algebra of differential forms. It is also clear that the
bidifferential calculus d, 4 is invariant, since both d and ¢ commute

with time evolution operator W(h) = {h, }.

Remark 6. Conservation laws that are associated with the
bidifferential calculus (151) (152) and form Lenard scheme (see [24]):

(k + 1)aI% = kditc*+? (156)

coincide with the sequence of integrals of motion (98). Proof of this
correspondence lays outside the scope of present manuscript, but can

be done in the manner similar to [17].

D R T R O P R T R Y Ry R R R S R L R Ry R R R R R R RN

Sample. The symmetry (53) endows R* with bicomplex structure d, d

where d is ordinary exterior derivative while d is defined by
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dz, = z;dz,; — €® ~ *dz, (157)
dz, = z,dz, + e® ™ #dz; |

dz3 = zydz; + dz,

dz, = z,dz; — dz;,

and is extended to whole De Rham complex by linearity, derivation
property and compatibility property dd + dd = 0. By direct
calculations one can verify that calculus constructed in this way is

consistent and satisfies d% = 0 property. To illustrate technique let us
explicitly check that d%z; = 0. Indeed

d%z, = ddz, = d(z,dz, — €* ™ *dz,) (158)
= dzy A dz; + z;ddz; — ¥~ *dz; A dz,

+ e®” Hdz, A dzy — B *ddz,

= dzy A dzy — zddz; — e® ™ *dz3 A dz,

+ e® " Mdzy A dzy + €87 Mddz, = 0

Because of properties

dz; A dz; = 2~ “dz; A dz,, (159)

— zddzy = z;® "~ #dz3 A dz,, (160)

— e® " udz3 A dzy, = -z *dz; A dz, — €®~ 2dz, A dz,, (161)

e® ~ “dz, A dz, = €37 Mdz, A dz, (162)
and

e®~ “ddz, = — €®~ *dz; A dz, (163)

Similarly one can show that
d%z, = d%z3 = 4%z, = 0 (164)

and thus d is nilpotent operator d® = 0. Note also that conservation

laws



V=7, + 7, (165)
1D = 7,2 + 2,2 + 2%~

form the simplest Lenard scheme
241V = d1¢? (166)

Similarly one can construct bidifferential calculus associated with
non-Noether symmetry (61) of three particle Toda chain. In this case d
can be defined by

dz, = z,dz; — e~ %dzs (167)
dz, = z,dz, + e* ™ *dz, — e® ~ %dzg

dz; = z3dz; + €® ~ %dzsg

dz, = zdzy — dz, — dz;

dzs = z,dz5 + dz; — dz;

dzg = zzdzg + dzy + dz,

and as in case of two particle Toda it can be extended to whole De
Rham complex by linearity, derivation property and compatibility
property dd + dd = 0. One can check that conservation laws of Toda

chain
=2z +z (168)
1(2) - Zl2 + Z22 + 232 + 0T B 4 DB T %
¥ =23+ 2,34 253 +3(z; + z)e% "% + 3(z, + zx)e™ " %

form Lenard scheme

2411 = 41@ (169)

3d1@ = 2d1®® (170)

.......................................................................................................................................................................................................

8. Frolicher-Nijenhuis geometry

Finally we would like to reveal some features of the operator Rg (89)
and to show how Frdlicher-Nijenhuis geometry arises in Hamiltonian

system that possesses certain non-Noether symmetry. From the
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geometric properties of the tangent valued forms we know that the
traces of powers of a linear operator F on tangent bundle are in
involution whenever its Frélicher-Nijenhuis torsion T(F) vanishes, i. e.

whenever for arbitrary vector fields X,Y the condition
T(FXX , Y) = [FX, FY] — F([FX , Y] (171)
+[X,FY] -FIX,YD)=0

is satisfied. Torsionless forms are also called Frolicher-Nijenhuis
operators and are widely used in theory of integrable models, where
they play role of recursion operators and are used in construction of
involutive family of conservation laws. We would like to show that
each generator of non-Noether symmetry satisfying equation
[[E[E , WI]W] = O canonically leads to invariant Frélicher-Nijenhuis
operator on tangent bundle over the phase space. This operator can be
expressed in terms of generator of symmetry and isomorphism
defined by Poisson bivector field. Strictly speaking we have the

following theorem.

----------------------------------------------------------------------------------------------------------------------- -

i Theorem 7. Let (M , h) be regular Hamiltonian system on the Poisson?
imanifold M. If the vector field E on M generates the non-Noether!

ésymmetry and satisfies the equation
[(E[E , WIIW] =0 (172)5

ithen the linear operator, defined for every vector field X byé

equation .
Re(X) = Oy{Led,(X) - [E , X] (173)}

{is invariant Froélicher-Nijenhuis operator on M.

B e L S e i R L L L L L X e L L L L L T T

Proof. Invariance of Rg follows from the invariance of the Rg defined
by (89) (note that for arbitrary 1-form vector field u and vector field
X contraction ixu has the property igxu = ixRgu, so Rg is actually
transposed to Rg). It remains to show that the condition (110) ensures
vanishing of the Frolicher-Nijenhuis torsion T(Rg) of Rg, i.e. for

arbitrary vector fields X, Y we must get
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TRX , Y) = [[Re(X) , RE(Y)] — R([Re(X) , Y] (174)
+ [X, Rg(Y)] - IRE([X , Y])) =0

First let us introduce tlthe following auxiliary 2-forms
w = O (W), ©* = Rpw ©** = Rpw* (175)

Using the realization (1.51) of the differential d and the property (195)
yields

dw = @, (W, W])=0 (176)
Similarly, using the property (114) we obtain
dw* = d® ([E, ‘W] — dLpw = & ([[E, WIW]) — Lgdo =0  (177)

And finally, taking intto account that w" = 20 ([E , W]) and using the
condition (110), we get

dw** = 20, ([[E[IE , W]IW]) — 2dLpew* = — 2Lgdw* =0 (178)
So the differential forrms w, w*, w** are closed

dw = do* =do™™ =0 (179)
Now let us consider the: contraction of T(Rg) and w.

ITRHX . V@ = IReX . ReVI® ~ i[Rpx | VIO (180)

= ix, Rey@” ¥ ijx , @™

= Ly xiyw® — ipgyLxw® — Lg xiyw® + iyLg xw*

— Lxigyw" + ig yLx™ + ifx | yjo0™*

= iyLxw™™ — Lyiyw*™ + ix yj0*™* =0
where we used (175) (179), the property of the Lie derivative

Lyiyw = iyLxw + ix  yjw (181)
and the relations of the following type

LREX(‘) = diRExw + iREde = dix(a)i‘E = Lx&)* - ixdﬁ)”E = Lxﬁl)”E (182)
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So we proved that fior arbitrary vector fields X, Y the contraction of
T(Re)X , Y) and w wanishes. But since W bivector is non-degenerate

(W™ # 0), its counter- image
W = @ (W) (183)

is also non-degeneraite and vanishing of the contraction (180) implies

that the torsion T(Rgg) itself is zero. So we get
T(RE)(X ) Y) = [RE(X) ) RE(Y)] - RE([RE(X) s Y] (184)
+ [X, Re(Y)] — Re([X, YD) =0

Sample. Note that oprerator Rg associated with non-Noether symmetry

(53) reproduces well kknown Frélicher-Nijenhuis operator

d d ) 9 (185)
RE=zdz; ® — —dz; ® — +z,dz, ® — +dz, ® —
821 824 322 823
d d
+z¢dzz ® —- + 87 H*dzz; ® —
823; 822
d )
+2,dzy ® — — eB " Hdz, @ —
9z, 9z

(compare with [30]). INote that operator Rg plays the role of recursion

operator for conservation laws
I(l) - Zl + ZZ (186)
1(2) - 212 + 222 + 2eZ3 - Z4

Indeed one can check that

2Rg(dIV) = 142 (187)

Similarly using nom-Noether symmetry (61) one can construct

recursion operator of three particle Toda chain
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) (188)

RE=2dzy ® — — e* ™ %dz; ® —
E 1dZy 52, 5 52,
d o d
+Z,dzy @ — + e* " 5dz, @ — — ¥ Hdzg ® —
9z, 0z, 9z,
d )
+23dz3 ® — + %7 %dzg @ —
823 823
d 2 d
+zdz,® — —dz; ® — —dz; ® —
824 824 824
d ) )
+2,dzg ® — +dzy ® — —dz3 ® —
825 825 825
d d d
+Z3d26®_+dzl®_‘+d22®_
dzg 0z dzZg

and as in case of two particle Toda chain, operator Ry appears to be

recursion operator for conservation laws
1V =z, + 2, (189)
1D = 22+ 2,2+ 2,2 + 262~ % 4 2e% 7 %
19 =23+ 2,3+ 238 +3(z + 7,)e% ™% + 3(z, + z5)e® ~ %

and fulfills the following recursion condition

dI® = 3Rg(dI?) = 6(RpAdIY) (190)

.......................................................................................................................................................................................................

9. One-parameter families of conservation laws

One-parameter group of transformations g, defined by (28) naturally

acts on algebra of integrals of motion. Namely for each conservation

law

d (191)
—J =0
dt

one can define one-parameter family of conserved quantities J(a) by

applying group of transformations g, to J

| 192
T(a) = g(T) = e =T + algT + E (aLp)°T + ... (192



Property (29) ensures that J(a) is conserved for arbitrary values of

parameter a

d d d (193)
—J@) = —gT) =g, (— T) =0
dt dt dt

and thus each conservation law gives rise to whole family of

conserved quantities that form orbit of group of transformations g,

Such an orbit J(a) is called involutive if conservation laws that form

it are in involution
{T@) , TbY =0 (194)

(for arbitrary values of parameters a, b). On 2n dimensional
symplectic manifold each involutive family that contains n
functionally independent integrals of motion naturally gives rise to
integrable system (due to Liouville-Arnold theorem). So in order to
identify those orbits that may be related to integrable models it is
important to know how involutivity of family of conserved
quantities J(a) is related to properties of initial conserved quantity
J(0) = T and nature of generator E of group g, = €t. In other words
we would like to know what condition must be satisfied by generator
of symmetry E and integral of motion J to ensure that
{J(@) , T(b} = 0. To address this issue and to describe class of vector
fields that possess nontrivial involutive orbits we would like to

propose the following theorem

----------------------------------------------------------------------------------------------------------------------- -

éTheorem 8. Let M be Poisson manifold endowed with 1-form s suchi
{ that

[WIWE,WIG) = ol WEIWE) WI (co # — 1) (199)’
;Then each function J satisfying property
' WiLwd) = o [WELWIAT) (e #0) (196);
é(co,x are some constants) gives rise to involutive set of functions '

J"(m) = (LW(s))m-T {‘T(m)’ ,']"(k)} =0 (197)
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Proof. First let us inroduce linear operator R on bundle of
multivector fields and define it for arbitrary multivector field V by

condition

1 (198)
R(V) = 5 ([IW(s),V] = Oy(Lw@,(V))

Proof of linearity of this operator is identical to proof given for (89)

so we will skip it. Further it is clear that

R(W) = [W(s),W] (199)

and
1 (200)
R¥ (W) = R([W(s),W]) = 5([W(s)[W(s),W]] — O yl(Lye))’w))
1 + Co

- [W(s)[W(s), WI]
where we used property

Dy ((Lyis))?w) = ®ylLyoLwie®) (201)

= pr(iw(s)de(s)w) + CDW(diW(S)LW(S)w)
= [W, @y (iweLwigw)] = [WIW(s),WI(s)] = co[W(s)[W(s), W1

In the same time by taking Lie derivative of (199) along the vector
field W(s) one gets

[WIW(s),WI(s)] = (LygR + RA(W) (202)

comparing (200) and (202) yields

(1 + cpLwoR + R? = 2R? (203)
and thus
LuoR = —2 R (204
° 1 + Co

Further let us rewrite condition (196) as follows
W(LyodT) = ¢;R(W)AT) (205)

due to linearity of operator R this condition can be extended to
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R™(W)(LydT) = ¢,R™ * (W)dT) (206)
Now assuming that the following condition is true
W((Lw())™dT) = ¢, R™(W)dT) (207)
let us take its Lie derivative along vector field W(s). We get
RW)((Lws)™dT) + W((Lyye)™ * 'dT) (208)
1 — ¢

= me,, R™* {W)dT) + ¢,,R™ * {(W)dT)
1 + Co

where we used properties (199) and (204). Note also that (207) together
with linearity of operator R imply that

R*W((Ly))™dT) = ¢ ,R* " ™(W)(dT) (209)
and thus (208) reduces to

W((Ly)™ * 1dT) = ¢, + (R™ F H(WNAT) (210)
where c., + is defined by

1 - CO (211)

1+CO

Cm +1 = IMCy

So we proved that if assumtion (207) is valid for m then it is also
valid for m + 1, we also know that for m = 1 it matches (205) and
thus by induction we proved that condition (207) is valid for

arbitrary m while ¢, can be determined by

1 = co :]m o (212)

1+Co

¢y = colm — 1)![

Now using (207) and (209) it is easy to show that functions (Ly))™J

are in involution. Indeed
(Lwe)™T, Lwe)*T} = W(d(Lwe)™T A d(Lyg)<T) (213)
= W((Lw)™dT A (Ly)*dT) = e W(dT A dJ) = 0

So we proved functions (197) are in involution.

........................................................................................................................................................................................................

Further we will focus on concrete integrable models such as Toda

chain, Broer-Kaup system and Benney system and we will use this
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theorem to prove involutivity of families of conservation laws

constructed using non-Noether symmetries

10. Toda Model

To illustrate features of non-Noether symmetries we often refer to
two and three particle non-periodic Toda systems However it turns
out that non-Noether symmetries are present in generic n-particle
non-periodic Toda chains too, moreover they preserve basic features of
symmetries (83), (61). In case of n-particle Toda model symmetry
yields n functionally independent conservation laws in involution,
gives rise to bi-Hamiltonian structure of Toda hierarchy, reproduces
Lax pair of Toda system, endows phase space with Froélicher-Nijenhuis
operator and leads to invariant bidifferential calculus on algebra of

differential forms over phase space of Toda system

First of all let us remind that Toda model is 2n dimensional
Hamiltonian system that describes the motion of n particles on the
line governed by the exponential interaction. Equations of motion of

the non periodic n-particle Toda model are

d _ (214)
dth Pi
d
—pi = eli — 1)e¥-+7% — g(n — i)eb ™ b
dt
(e(k) = — e(— k) = 1 for any natural k and &(0) = 0) and can be

rewritten in Hamiltonian form (24) with canonical Poisson bracket
defined by

) (215)

"9
W= ) A
i=1 9P 9q;
corresponding symplectic form

n

w= 2, dp; A dg;

i=1

(216)

and Hamiltonian equal to
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1 o "o (217)
h==23 p?+ 2 e¥~9u
2j=1 i=1
Note that in two and three particle case we used slightly different
notations
Z; = Ppi (218)
Zn+i = qQ i=1,2,(3:n=23)

for local coordinates. The group of transformations g, generated by
the vector field E will be symmetry of Toda chain if for each p;, q;
satisfying Toda equations (214) g.(p;), ga.(q)) also satisfy it. Substituting

infinitesimal transformations
g.p) = p; + aE(p;) + O(a? (219)
gp) = q + aE(g) + O(?

into (214) and grouping first order terms gives rise to the conditions

d (220)
—E(q;) = E(py)
dt
d -_—
—E(p) = e(i — 1)e%-+~ % (E(g; - y) — Elg))
dt
— e(n — i)e? ~ %1 (E(gy) — Elg; + 1)
One can verify that the vector field defined by
(221)

1
E(p,) = Epiz +e(i—1)n-i+2)et-+" %

t
—eln —i)n — i) e¥ T+ + ‘2‘(8(i — 1)(P1— { + pl) eli-1 ~ Q&

— e(n - 1)(P1 + pi+ 1) el ~4+)

i—1 n

{ {
E(@=Mm-i+p;— =2 pc +— 2 P«
2 - =i+t

' —2_(P12 +ei— 1)e2-17% +e(n — i)ed ™ %)
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satisfies (31) and generates symmetry of Toda chain. It appears that
this symmetry is non-Noether since it does not preserve Poisson
bracket structure [E , W] # O and additionally one can check that
Yang-Baxter equation [[E[E , W]]W] = 0 is satisfied. This symmetry
may play important role in analysis of Toda model. First let us note

that calculating Lgw leads to the following 2-form

n n-—1

Lew = D, pdp; Adg + D, e¥ "% 1dqg; A dq+q

i=1 i=1

+ >, dp; A dp;

i<j

(222)

and together w and Lgw give rise to bi-Hamiltonian structure of Toda
model (compare with [30]). Thus bi-Hamiltonian realization of Toda
chain can be considered as manifestation of hidden symmetry. In fact
non-Noether symmetry carries even more information about the bi-
Hamiltonian structure and give rise to the invariant symplectic
potential for the differential form Lpw, i.e. invariant 1-form 0* such

that
do* = w (223)

This 1-form can be constructed by taking contraction of generator E

of non-Noether symmetry and symplectic form w

S [ (224)
0* = ipw = Z Epiqui +(n—i+ 1)pidpiJ
=1 L

n-—-1 —

+ Z edi T Qi+t (n—1+1)dqj+1—(n—i)d%]

i=1 -

In terms of bivector fields these bi-Hamiltonian system is formed by

0 (225)

"9
W= ) A
i=1 9pi  9q;

and
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9 ) (226)

W=[E 2 pi — A —
i=1 9p;i 9g
n-1
9 3 9
+ 2 ed T qi+1 A + Z
i=1 9pi  9Pi+1  i<¢j 9q 3qJ-

The conservation laws (45) associated with the symmetry reproduce

well known set of conservation laws of Toda chain.

I(l) C(l) Z p;
i=1

(227)

n-—1
¥ = (C(l))Z - oc@ - 2 P1 + 9 Z edi ~ Qi+t
i=1 i=1
1(3) - C(l))3 _ 3C(1)C(2) + 3c(3)
n-—1
E pP+3 % (pi+pisy)ed I
i=1 i=1
I(%) C(l)) _ 4(C“))2C(2) + 2((:(2))2 + 4c(1)c(3) _ 4c(4)
n-1

2 pit+4 ) (p®+ 2ppi+gt pivgd) et I
i=1 i=1

n-1 n-—2
+ 2 Z e2(Qi"CIi+l)+4 Z edi T di+2
i=1 i=1
m — 1
I(m) =(— 1)m* lmC(m) + Z (- 1)k + II(m - k)C(k)
k=1

The condition [[E[E , WIIW] = O satisfied by generator of the
symmetry E ensures that the conservation laws are in involution i. e.
fc  cm} = 0. Thus the conservation laws as well as the bi-
Hamiltonian structure of the non periodic Toda chain appear to be

associated with non-Noether symmetry.

Using formula (88) one can calculate Lax pair associated with
symmetry (221). Lax matrix calculated in this way has the following
non-zero entries (note that in case of n = 2 and n = 3 this formula
yields matrices (102)-(105))
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Lk,k=Ln+k.n+k=Pk (228)

Ln+k,k+1 == Ln+k+l,k =e(n — ke« = &+
Ly n+m = e(m — k)
m k=12, ..., n
while non-zero entries of P matrix involved in Lax pair are

P nsk =1 (229)

Pn+k.k=_8(k_ {)ek-17 4 — g(n — k)e% T -+
Pn+k,k+1=8(n"k)eq“_qk"
Phik k-1 =elk— 1)ed-17%

k=12, ..,n

This Lax pair constructed from generator of non-Noether symmetry

exactly reproduces known Lax pair of Toda chain.

Like two and three particle Toda chain, n-particle Toda model also
admits invariant bidifferential calculus on algebra of differential
forms over the phase space. This bidifferential calculus can be
constructed using non-Noether symmetry (see (152)), it consists out of

two differential operators d, & where d is ordinary exterior derivative

while d can be defined by

(230)
dq = pdg, + X, dp; — X dp

i<j i
dp; = pdp; — €¥ " ¥°ldg; 4y * €' Udg;
and is extended to whole De Rham complex by linearity, derivation
property and compatibility property dd + dd = 0. By direct
calculations one can verify that calculus constructed in this way is
consistent and satisfies d° = 0 property. One can also check that

conservation laws (227) form Lenard scheme

(k + 1)dIR = kdik+ D (231)

Further let us focus on Frélicher-Nijenhuis geometry. Using formula

(173) one can construct invariant Frélicher-Nijenhuis operator, out of



generator of non-Noether symmetry of Toda chain. Operator

constructed in this way has the form

_ " 9 9 (232)
Rg = 2. pil:dpi®_+dqi®_:|
i=1 9q; ap;

n—1 9
— Z eqi_qi+ldqj+1®_
i=1 ap;
n—1 3
+ }: e‘l;-l“lidqj®-—
i=1 ap;
>, l:d ® ° dp; ® ° }
- Pi T dp; —
i< an' aq;

One can check that Frolicher-Nijenhuis torsion of this operator
vanishes and it plays role of recursion operator for n-particle Toda

I(k)

chain in sense that conservation laws satisfy recursion relation

(k + DRE(dI™) = kd1k* D (233)

Thus non-Noether symmetry of Toda chain not only leads to n
functionally independent conservation laws in involution, but also
essentially enriches phase space geometry by endowing it with
invariant Froélicher-Nijenhuis operator. bi-Hamiltonian system,

bicomplex structure and Lax pair.

Finally, in order to outline possible applications of Theorem 8 let us
study action of non-Noether symmetry (221) on conserved quantities
of Toda chain. Vector field E defined by (221) generates one-parameter
group of transformations (28) that maps arbitrary conserved quantity
J to

a® a® (234)

J@) =T +aTW+ —73@ + —g0 +
2! 3!

where

Jm = (Lp™T (235)

In particular let us focus on family of conserved quantities obtained

by action of g, = € on total momenta of Toda chain
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° (236)
J = 2 Pi

i=1
By direct calculations one can check that family J (a), that forms orbit
of non-Noether symmetry generated by E, reproduces entire

involutive family of integrals of motion (227). Namely

(237)

n-—1
2 (pi + pi+1) €37 3
i=1
T3 = LE*T(Z) = (LE)S.T
n-—1

2 pt+v3 2 (Pt 2ppiag tpieg) ey

i=1 i=1
n-1 n-2

Z e2(Qi"q“l)+3 2 ed ~ Qi+

i=1 i=1

T(m) - LEJ"(m - 1) _ (Lp™T

DO W s W

Involutivity of this set of conservation laws can be verified using
Theorem 8. In particular one can notice that differential 1-form s
defined by

E = W(s) (238)
(where E is generator of non-Noether symmetry (221)) satisfies
condition

[WIW(s),W1(s)] = 3[W(s)[W(s) ,WII (239)

while conservation law J defined by (236) has property
W(LydT) = — [W(s),WI(dT) (240)

and thus according to Theorem 8 conservation laws (237) are in

involution.

11. Nonlinear Schrédinger equation

Toda model provided good sample of finite dimensional integrable

Hamiltonian system that possesses non-Noether symmetry. However
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there are many infinite dimensional integrable Hamiltonian systems
and in this case in order to ensure integrability one should construct
infinite number of conservation laws. Fortunately in several
integrable models this task can be effectively simplified by
identifying appropriate non-Noether symmetry. First let us consider
well known infinite dimensional integrable Hamiltonian system —

nonlinear Schrodinger equation (NSE)

Vi = iy + 29%y) (241)
where vy is a smooth complex function of (t, x) € R% On this stage we
will not specify any boundary conditions and will just focus on
symmetries of NSE. Supposing that the vector field E generates the

symmetry of NSE one gets the following restriction
E(y); = ilE(y)yx + 2y2E(y) + 4y yE(y)] (242)

(obtained by substituting infinitesimal transformation
y — vy + aE(y) + O(a®) generated by E into NSE). It appears that NSE

possesses nontrivial symmetry that is generated by the vector field

X — — (243)
Ely) = iy * W * ¥+ 2X¥°Y) ~ Uyooc * BY YY)

(here ¢ is defined by ¢, = yv).

In order to construct conservation laws we also need to know Poisson
bracket structure and it appears that invariant Poisson bivector field
can be defined if W is subjected zero y(t, — ) = y(t, + o) = 0
boundary conditions. In terms of variational derivatives the explicit

form of the Poisson bivector field is

J dx o5 /\ o (244)
oo ‘l’

while corresponding symplectic form obtained by inverting W is

j dx &y A 8y (245)

Now one can check that NSE can be rewritten in Hamiltonian form
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Vi = th ’ \{f} (246)
with Poisson bracket {, } defined by W and

+ 00
_ — (247)
h = I dx (‘Vz‘lfz ~ V¥
- ©
Knowing the symmetry of NSE that appears to be non-Noether
(IE, W] # 0) one can construct bi-Hamiltonian structure and

conservation laws. First let us calculate Lie derivative of symplectic

form along the symmetry generator

+ o0 _ _ _ 8
Lpw = J- [6yyx A 8y + w66 A Sy + y8p A Syldx (248)

The couple of 2-forms w and Lgw exactly reproduces the bi-

Hamiltonian structure of NSE proposed by Magri [55]. Note also that
using non-Noether symmetry one can construct invariant symplectic

potential

[ _ 249
0* = igw = I [-2- (y&y, + yoy,) + ¢$8(yy) (249)

X _ — e —
+ -é- (\|f2\|f2 = Yy ¥ldx + t8[ J- (V¥ — Yyyy) dx]

The the conservation laws associated with non-Noether symmetry are

well known conservation laws of NSE
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+ ©O

— 250
D=c=9 J- vy dx ( )

1@ = (c")2 — 2¢c@ = j j (§x\|f - ‘I’x;) dx

+ OO0

® = ()3 - 3cc® 4+ 3¢c® = 2 I (w22 — ) dx

14 = (C(l))-t - 4(C(1))2C(2) + 2(C(2))2 + 4CNc@® — 4@

= | G~ wred + iy - vy dx
- m - |
[(m) 2 (= 1)+ Ilmcim) 4 2 (- 1)k 11(m - k)(k)
k=1

The involutivity of the conservation laws of NSE {C(k), cim} = 0 is
related to the fact that E satisfies Yang-Baxter equation
[[E[E , WIIW] = 0. So non-Noether symmetry of NSE reproduces
infinite sequence of functionally independent conservation laws in
involution, endows the phase space with invariant bi-Hamiltonian

structure and gives rise to the following Frélicher-Nijenhuis operator

+ ©O

) { 6 (251)
RE—J- i[w8¢®8——58\|fx®g—]dx+h.c.
~ Y ¥

This Frolicher-Nijenhuis operator plays the role of recursion operator

for the infinite sequence of conservation laws

ditk + U = Re(dI™) (252)

12. Korteweg-de Vries equation

Now let us consider other important integrable models — Korteweg-de
Vries equation (KdV) and modified Korteweg-de Vries equation (mKdV).
Here symmetries are more complicated but generator of the
symmetry still can be identified and wused in construction of

conservation laws. The KdV and mKdV equations have the following

form

Up + Uy, + uu, = 0 [KdV] (253)
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and
Uy + Uy, — 6ulu, = 0 [mKdV] (254)

(here u is smooth function of (t, x) € R?. The generators of

symmetries of KdV and mKdV should satisfy conditions

E(u); + E(u),y, + u E(u) + uE(u), = 0 [KdV] (255)
and

E(u), + E(u),,, — 12uu,E(u) — 6uE(u), = 0 [mKdV] (256)

(again this conditions are obtained by substituting infinitesimal

transformation u — u + aE(u) + 0% into KdV and mKdV,

respectively).

Further we will focus on the symmetries generated by the following

vector fields

| { i X (257)
E(u) = —u,, + Euz + auxv + g(uxxx + uu,) —
t
E(6UXXxxx + 2Ouxuxx + 10 Ulyxy + 5U2Ux) [KdV]

and
3 X (258)

E(u) = — -2-uxx + 2ud + u,w — -2-(uxxx - 6u2ux) -
3t

—2—(uxxxxx - 10u®u,,, — 4Ouu,u,, — 10u,’ + 30utu,) [mKdV]

(here v and w are defined by v, = u and w, = u?

To construct conservation laws we need to know Poisson bracket
structure and again like in the case of NSE the Poisson bivector field
is well defined when u is subjected to zero u(t, — ©) = u(t, + o) = 0
boundary conditions. For both KdV and mKdV the Poisson bivector
field is

+ 00

) 6 (259)
W = dx —A —
oo Su 6v
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with corresponding symplectic form

+ CO

260
o= | dx8uA by (260)
leading to Hamiltonian realization of KdV and mKdV equations
u; = th , u (261)
with Hamiltonians
o u? (262)
h = j (u? - -3—) dx [KdV]
and
o (263)

h= | (u2+uh dx [mKdV]

By taking Lie derivative of the symplectic form along the generators

of the symmetries one gets another couple of symplectic forms

+ OO

2 (264)
Lrw = I dx (8u A 8u, + 5u8u A &v) [KdV]
- ©

+ OO

265
J- dx (Su A 8u, — 2udu A &w) [mKdV] (269

LEOJ

involved in bi-Hamiltonian realization of KdV/mKdV hierarchies and

proposed by Magri [55].

The conservation laws associated with the symmetries reproduce

infinite sequence of conservation laws of KdV equation
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+ OO

{0 - o 2 2 J u dx (266)
3 oo

(@ = c) _ 90@ = t [
9_

- 00

I(3) - (C(l))3 - 3¢ 4 3c@ = E J- - u 2) dx
9 X
19 = (C(l))4 - 4(C(1))2C(2) + 2(c(2))2 + 4C(1)C(3) — 4CW
6¢ 5 5
= — (— ut - —uu,? + u,,? dx
45 ° 36 3
m — |
I(m) = (- 1)m* Imcim) — 2 (- l)k + 11(m = k)(k)
k=1
and mlKdV equation
I(l) = C(l) = — 4 J. u2 dx (267)

(@ = c) = 2c@ = 16 j (ut + ud) dx
1@ = (¢’ - 3cWc@ + 3¢c@

—— 3 j(mﬂ+mu%3+ugﬁm

149 = (C(l))‘: _ ,1_(C(1))2C(2) + z(c(Z))Z + 4CcOc@® — 4c®

256 [
= ? (5 u® + 70utu,? - Tu,t + 14ulu,? + u,?) dx
m-—1
I(m) =(-1)m* lmC(m) + Z (- l)k + II(m - k)C(k)
k=1

The imvolutivity of these conservation laws is well known and in
terms of the symmetry generators it is ensured by conditions
[[E[E ., WIIW] = 0. Thus the conservation laws and bi-Hamiltonian
structures of KdV and mKdV hierarchies are related to the non-

Noether symmetries of KdV and mKdV equations. Moreover these
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symmetries seem to be responsible for the existence of well known

bi-Hamiltonian structures of KdV and mKdV equations.

13. Nonlinear water wave equations

Among nonlinear partial differential equations that describe
propagation of waves in shallow water there are many remarkable
integrable systems We already discussed case of KdV and mKdV
equations, that possess non-Noether symmetries leading to the infinite
sequence of conservation laws and bi-Hamiltonian realization of these
equations, now let us consider other important water wave systems It
is reasonable to start with dispersive water wave system, since many
other models can be obtained from it by reduction. Evolution of
dispersive water wave system is governed by the following set of

equations
Uy = U,w + uw, (268)
Vi = Uly — Vi T 2Vv,w + 2V
Wi = Wy — 2V, + 2wWww,

Each symmetry of this system must satisfy linear equation
E(u), = (wE(u)), + (UE(w)), (269)
E(v); = (uE(u)), — E(v),y + 2(WE(V)), + 2(VE(w)),
E(w), = E(w), — 2E(v), + 2(wE(w)),

obtained by substituting infinitesimal transformations
u — u + aE(u) + O(a? (270)
v — v + aE(v) + 0(a?)
w — w + aE(w) + 0(a9)

into equations of motion (268) and grouping first order (in a) terms.
One of the solutions of this equation yields the following symmetry

of dispersive water wave system
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E(u) = uw + x(uw), + 2t(luw?® — 2uv + uw,), (271)
E(v) = Euz + 4vw — 3v, + x(uu, + 2(vw), — vy)

+ 2t(u?w — uu, — 3v? - 3vw? — 3v,w + V),
E(w) = w2 + 2w, — 4v + x(2ww, + w,, — 2V,)
— 2t(u?® + 6vw — w3 — 3ww, — W, ),

and it is remarkable that this symmetry is local in sense that E(u) in
point x depends only on u and its derivatives evaluated in the same
point, (this is not the case in KdV, mKdV and NLS equations where
symmetries are non local due to presence of non local fields like v
defined by v, = u in KdV equation, w defined by w, = u? in mKdV and

¢ defined by ¢, = ‘l’; in case of nonlinear Scrédinger equation).

Before we proceed let us note that dispersive water wave system is
actually infinite dimensional Hamiltonian dynamical system
Assuming that u, v and w fields are subjected to zero boundary

conditions
u( ) = v(+ 00) = w(t 00) = 0 (272)

it is easy to verify that equations (268) can be represented in

Hamiltonian form

u, = th , u} (273)
vi = th, vi
wy = th , wi

with Hamiltonian equal to
1
4

+ 0O

(274)
_[ (uPw + 2vw? — 2v,w — 2vddx

h=-

and Poisson bracket defined by the following Poisson bivector field

W = - — A} — + — A| — dx
" L 2 bu Su {1, bv dw |,
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Now using our symmetry that appears to be non-Noether, one can
calculate second Poisson bivector field involved in the bi-Hamiltonian

realization of dispersive water wave system

) T 5 8 5 & 7 (276)
W=[E,W]=—2J- u—A| — +v — A| —
oo Sv du |, ov ov 4

) ) 6 S 6 )
+| — | Al — | +w—A| — | #| — | A— |
6v dw | Sv dw | 6w |, dw

Note that W give rise to the second Hamiltonian realization of the

model
u, = th*, u}, (277)
vy = th®, vi,
wy = th" , wi,

where

(278)

h* = - J (u?® + 2vw)dx

| e

and { , 3, is Poisson bracket defined by bivector field W.

Now let us pay attention to conservation laws. By integrating third

equation of dispersive water wave system (268) it is easy to show that

" 279
TO - j wdx 279)

is conservation law. Using non-Noether symmetry one can construct
other conservation laws by taking Lie derivative of Jto along the
generator of symmetry and in this way entire infinite sequence of

conservation laws of dispersive water wave system can be reproduced

(9



280
JO = I wdx (280)

+ CO

T = LTO = =2 | vx
+ 00

TP = LW = (LT0 = -2 | (@ + 2vwidx

3"(3) - LEJ"(2) = (LE)3-T(O)

+ OO

= — 6 J- (uzw + 2VW2 - 2VxW - 2V2)dX

T = LE'T(a) - (LE)4J~(O)

= — 24 J (udw? + uzwx — 2u®v — 6vPw
- ®

+ 2vwS = 3v,w? - 2v,w,)dx
Tn) - LEJ‘(n -1) _ (LE)n-T(O)

Thus conservation laws and bi-Hamiltonian structure of dispersive
water wave system can be constructed by means of non-Noether

symmetry.

To prove involutivity of infinite sequence of conserved quantities
(280) one can use Theorem 8. In particular one can check that {-form s

defined via
E = W(s) (281)

(E is generator of non-Noether symmetry (271)) satisfies condition

[WIW(s),Wl(s)] = 3[W(s)[W(s) ,WI] (282)
while
T e J’ vdx (283)

has property
W(LwodT) = — [W(s), WIdT) (284)

63



and as a consequence of Theorem 8 gives rise to involutive family of

conserved quantities.

Note that symmetry (271) can be used in many other partial
differential equations that can be obtained by reduction from
dispersive water wave system. In particular one can use it in
dispersiveless water wave system, Broer-Kaup system, dispersiveless
long wave system, Burger's equation etc. In case of dispersiveless water

waves system
Uu; = u,wW + uw, (285)
Vi = uu, + 2v,w + 2vw,
wy = — 2v, + 2ww,

symmetry (271) is reduced to

E(u) = uw + x(uw), + 2t(uw? — 2uv), (286)
E(v) = —u® + 4vw + x(uu, + 2(vw),) + 2t(uw — 3v? + 3vw?d),

E(w) = w? — 4v + x(2ww, — 2v,) — 2t(u® + 6vw — wd),
and corresponding conservation laws (280) reduce to

+ 00
TO = J- wdx (287)

+ OO

JO =170 = -2 | vdx
- o0

+ OO

TP = LW = L0 = -2 | (W + 2vwldx

+ OO

JO = Lg@ = (L3700 = -6 j (uPw + 2vw? — 2vidx
T4 = LE‘T(s) - (LE)-fJ*(O)
= — 24 J- (uPw? — 2u®v — 6viw + 2vwd)dx

Jin) o LE.T(n -1 _ (LE)n.T(O)
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Another important integrable model that can be obtained from

dispersive water wave system is Broer-Kaup system

1 (288)
Vi = E Vyx T VW + vw,
1
Wt=_gwxx+vx+wwx

One can check that symmetry (271) of dispersive water wave system,

after reduction, reproduces non-Noether symmetry of Broer-Kaup

model
E(v) = 4vw + 3v, + x(2(vw), + v,,) (289)
+ t(3v% + 3vw? + 3v,w + v, ),
E(w) = w2 — 2w, + 4v + x(2ww, — w,, + 2v,)
+ t6vw + w3 — Bww, + w,,),

and gives rise to the infinite sequence of conservation laws of Broer-

Kaup hierarchy

o T o (290)
- + 00
TV =139 =2 | vdx
I + 00
TP = L3 = 1PT0 = ¢ | vwdx

+ OO

T9 = LTP = LPT0 =12 | (vw?+ vw + vAdx

J‘(‘!) = LEJ‘(3) - (LE)QJ*(O)

+ 00
=24 | (6v2w + 2vw® + Bv,w? - 2v,w)dx
- o
J‘(“) = LE-T(n -1) _ (LE)nJ(O)

And exactly like in the dispersive water wave system one can rewrite

equations of motion (288) in Hamiltonian form
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vi = th, v (291)
wy = th , wi

where Hamiltonian is
+ OO

|
— J- (vw? + v,w + v¥dx
2 oo

(292)
h =

while Poisson bracket is defined by the Poisson bivector field

+ 0O

[ 5 I: 5 } :] (293)
W = — A| — dx
o L OV dw ] 4

And again, using symmetry (289) one can recover second Poisson
bivector field involved in the bi-Hamiltonian realization of Broer-

Kaup system by taking Lie derivative of (293)

+ OO

) : 5 5 (294)
W=[E, Wl=-2 [v——/\[—]
- v ov 4

— 00

) & | 6 ) ) )
- — ANl — +w — A| — + — A| — d
dv |, dw | &v dw |, Ow dw ]

This bivector field give rise to the second Hamiltonian realization of

the Broer-Kaup system
vy = th* | vi, (295)
w; = th* |, wi,

with

+ 00

J. vwdx

1 (296)
t o

h* = -

So the non-Noether symmetry of Broer-Kaup system Yyields infinite
sequence of conservation laws of Broer-Kaup hierarchy and endows it

with bi-Hamiltonian structure.

By suppressing dispersive terms in Broer-Kaup system one reduces it

to more simple integarble model — dispersiveless long wave system
Vi = VW + vy, (297)

Wi = Vy ¥ ww,
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in this case symmetry (271) reduces to more simple non-Noether

symmetry
E(v) = 4vw + 2x(vw), + 3t(vZ + vw?), (298)
E(w) = w? + 4v + 2x(ww, + v,) + t(6vw + wd),

while the conservation laws of Broer-Kaup hierarchy reduce to

sequence of conservation laws of dispersiveless long wave system

+ 00
TO = j wdx (299)

TW =170 =2 | vdx

+ 00

T = LEJ'(I) = (LE)z.T(O) = 4 J. vwdx

+ OO

T = L;T? = 179 = 12 | (vw? + vAdx

+ 0O

T = L7 = LTO =48 | @viw + vwidx

Tin) = LE'T(n -1) - (LE)nJ-(O)

In the same time bi-Hamitonian structure of Broer-Kaup hierarchy,
after reduction gives rise to bi-Hamiltonian structure of dispersiveless

long wave system

+ OO

[ 5 [ 8 } } (300)
W = — A| — dx
oo L v dw |,

) + 00 5 5
W=[E,W]=—2I[v—/\[—}
v o6v 4

- 00

) ) ) 6
tw—A| — | +—A| — dx
Sv dw |, Ow ow | 4

Among other reductions of dispersive water wave system one should

probably mention Burger's equation

67



Wi = Wy + WW, (301)

However Hamiltonian realization of this equation is unknown (for
instance Poisson bivector field of dispersive water wave system (275)

vanishes during reduction).

14. Benney system

Now let us consider another integrable system of nonlinear partial
differential equations — Benney system Time evolution of this

dynamical system is governed by equations of motion
u; = vv, + 2(uw), (302)
vy = 2uy + (vw),
wy = 2V, + 2ww,

To determine symmetries of the system one has to look for solutions

of linear equation
E(u), = (VEW)), + 2uE(w)), + 2(wE(w)), (303)
E(v); = 2E(u), + (VE(w)), + (WE(Vv)),
E(w), = 2E(v), + 2(wE(w)),

obtained by substituting infinitesimal transformations
u — u + aE(u) + O(a? (304)
v — v + aE(v) + 0(a?)
w — w + aE(w) + O(a?)

into equations (302) and grouping first order terms. In particular one
can check that the vector field E defined by

E(u) = Suw + 2v? + x(2(uw), + vv,) + 2t(4uv + viw + 3uw?), (305)
E(v) = vw + 6u + x((vw), + 2u,) + 2t(4uw + 3vZ + vw?),
E(w) = w? + 4v + 2x(ww, + v,) + 2t(w3 + 4vw + 4u),

satisfies equation (303) and therefore generates symmetry of Benney
system. The fact that this symmetry is local simplifies further

calculations.
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In the same time, it is known fact, that under zero boundary

conditions
u(t o) = v(t 00) = w(t 00) =0 (306)

Benney equations can be rewritten in Hamiltonian form

uy = th, ud ’ (307)
vi = th , v}
Wi = {h , W}

with Hamiltonian
+ 00

{
E I (2uw? + 4uv + viw)dx

. (308)

and Poisson bracket defined by the following Poisson bivector ficld

Tr1os 5 8 5 (309)
W = J - — AN| — + — A — dx
o L 2 bv 6v |1, ou dw | 4

Using symmetry (305) that in fact is non-Noether one, we can
reproduce second Poisson bivector field involved in the bi-Hamiltonian

structure of Benney hierarchy (by taking Lie derivative of W along E)

) s 5 5 8 & 7(310)
W=[E,W]=—3J. u—A| — + v —A| —
"o du du | du ov |,

) ) ) )
+w — A| — +2 —AN| — dx
du dw |, v dw |

Poisson bracket defined by bivector field W gives rise to the second

Hamiltonian realization of Benney system
u, = th* , ul, (311)
vy = th* | vi,
wy = th® | wi,

with new Hamiltonian
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+ O

i
h* = - J- (v? + 2uw)dx
6 “w

(312)

Thus symmetry (305) is closely related to bi-Hamiltonian realization of

Benney hierarchy.

The same symmetry yields infinite sequence of conservation laws of
Benney system. Namely one can construct sequence of integrals of

motion by applying non-Noether symmetry (305) to

r (313)
T0O = j wdx
(the fact that J' is conserved can be verified by integrating third
equation of Benney system). The sequence looks like

JO = I wdx (314)

+ OO0

g =170 =2 | vdx

TO = LTV = L2TO =8 | udx

+ <O

TO = LT = L*TO = 12 | (?+ 2uwdx

-

-

TW = LT = (LT = 48 (Quw? + 4uv + viw)dx

8 ' 8

7O = LEJ'H) - (LE)SJ"(O)

+ OO

= 240 I (4u? + Buvw + 2uw’ + 2v3 + viwddx

- O

J"(n) - LEJ'(n -1) _ (LE)n.T(O)

So conservation laws and bi-Hamiltonian structure of Benney
hierarchy are closely related to its symmetry, that can play important
role in analysis of Benney system and other models that can be

obtained from it by reduction.
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Similarly to the case of nonlinear water wave system, proof’ of
involutivity of these conservation laws is based on Theorem 8.
Namely, 1-form s defined by means of non-Noether symmetry (305)

as follows
E = W(s) (315)

has property

: 6

while conservation law

+ 00

.T=J-udx

- 00

(317)

satisfies condition
W(LydT) = — [W(s),WI(dT) (318)

and thus according to Theorem 8 produces involutive family of

conserved quantities.

Conclusions

The fact that many important integrable models, such as Korteweg-de
Vries equation, nonlinear Schrédinger equation, Broer-Kaup system,
Benney system and Toda chain, possess non-Noether symmetries that
can be effectively used in analysis of these models, inclines us to
think that non-Noether symmetries can play essential role in theory
of integrable systems and properties of this class of symmetries
should be investigated further. The present thesis indicates that in
many cases non-Noether symmetries lead to maximal involutive
families of functionally independent conserved quantities and in this
way ensure integrability of dynamical system. To determine
involutivity of conservation laws in cases when it can not be checked
by direct computations (for instance in direct way one can not check
involutivity in many generic n-dimensional models like Toda chain
and infinite dimensional models like KdV hierarchy) we propose

analog of Yang-Baxter equation, that being satisfied by generator of

1



symmetry, ensures involutivity of family of conserved quantities

associated with this symmetry.

Another important feature of non-Noether symmetries is their
relationship with several essential geometric concepts, emerging in
theory of integrable systems, such as Frélicher-Nijenhuis operators,
Lax pairs, bi-Hamiltonian structures and bicomplexes. From one hand
this relationship enlarges possible scope of applications of non-
Noether symmetries in Hamiltonian dynamics and from another hand
it indicates that existence of invariant Frolicher-Nijenhuis operators,
bi-Hamiltonian structures and bicomplexes in many cases can be
considered as manifestation of hidden symmetries of dynamical

system.

As a final remark let us summarize main new results of the thesis.

1. Formula for conservation laws associated with non-Noether
symmetry is reformulated in geometric terms and extended to
the case of infinite dimensional Hamiltonian dynamical systems

2. It is shown that each non-Noether symmetry leads to Lax pair of
a cetran type. Lax pair is explicitly constructed in terms of
Poisson bivector field and generator of non-Noether symmetry.

3. Analog of Yang-Baxter equation that, being satisfied by generator
of symmetry, ensures involutivity of set of conservation laws
produced by this symmetry, is introduced.

4. Action of one-parameter group of symmetry on algebra of
integrals of motion is investigated and condition under which
group orbit becomes involutive is introduced.

5. It is proved that under certain conditions, non-Noether symmetry
endows phase space of regular Hamiltonian system with bi-
Hamiltonian structure. Conditions under which non-Noether
symmetry can be 'recovered’ from bi-Hamiltonian structure are
discussed.

6. Special kind of deformation of De Rham complex induced by
symmetry is constructed in terms of Poisson bivector field and

generator of symmetry.

T



7. It is shown that under certain condition non-Noether symmetry
gives rise to invariant Froélicher-Nijenhuis operator on tangent
bundle over phase space.

8. Hidden non-Noether symmetries of Toda chain, nonlinear
Schrédinger equation, Korteweg-de Vries equations, Benney
system, nonlinear water wave equations and Broer-Kaup system are

revealed and discussed.

The obtained results can be used in theory of integrable Hamiltonian

systems
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