· Гипоксия
ГИПОКСИЯ: |
• состояние, возникающее в результате |
• недостаточного обеспечения тканей организма кислородом и/или |
• нарушения его усвоения в ходе биологического окисления |
Синонимами понятия «гипоксия» в такой трактовке являются «кислородное голодание» и «кислородная недостаточность».
ГИПОКСИЯ: |
• типовой патологический процесс, |
• развивающийся в результате недостаточности биологического окисления, |
• приводящий к нарушению энергетического обеспечения функций и пластических процессов в организме |
Такая трактовка термина «гипоксия» означает абсолютную или относительную недостаточность уровня реального энергообеспечения по сравнению с уровнем функциональной активности и интенсивности пластических процессов в органе, ткани, организме. Это состояние приводит к нарушению жизнедеятельности организма в целом, расстройствам функций органов и тканей. Морфологические изменения в них имеют различный масштаб и степень, вплоть до гибели клеток и деструкции неклеточных структур.
ГИПОКСЕМИЯ: |
• уменьшение по сравнению с должным |
• уровней напряжения и содержания кислорода в крови |
Рис. 15–1. Типы гипоксии по этиологии.
• степень нарушения нервно‑психической деятельности,
• выраженность расстройств функций ССС и дыхательной систем,
• величину отклонений показателей газового состава и КЩР крови, а также некоторых других показателей.
• При нормальном барометрическом давлении говорят о нормобарической экзогенной гипоксии.
• При снижении барометрического давления экзогенную гипоксию называют гипобарической.
• Нахождении людей в небольшом и/или плохо вентилируемом пространстве (помещении, шахте, колодце, лифте).
• При нарушениях регенерации воздуха и/или подачи кислородной смеси для дыхания в летательных и глубинных аппаратах, автономных костюмах (космонавтов, лётчиков, водолазов, спасателей, пожарников).
• При несоблюдении методики ИВЛ.
• Горная болезнь наблюдается при подъёме в горы, где организм подвергается воздействию не только пониженного содержания кислорода в воздухе и пониженного барометрического давления, но также более или менее выраженной физической нагрузки, охлажения, повышенной инсоляции и других факторов средне‑ и высокогорья.
• Высотная болезнь развивается у людей, поднятых на большую высоту в открытых летательных аппаратах, на креслах‑подъёмниках, а также — при снижении давления в барокамере. В этих случаях на организм действуют в основном сниженные pO2 во вдыхаемом воздухе и барометрическое давление.
• Декомпрессионная болезнь наблюдается при резком снижении барометрического давления (например, в результате разгерметизации летательных аппаратов на высоте более 10 000–11 000 м). При этом формируется опасное для жизни состояние, отличающееся от горной и высотной болезни острым или даже молниеносным течением.
• Снижение напряжения кислорода в плазме артериальной крови (артериальная гипоксемия) — инициальное и главное звено экзогенной гипоксии. Гипоксемия ведёт к уменьшению насыщения кислородом Hb, общего содержания кислорода в крови и как следствие — к нарушениям газообмена и метаболизма в тканях.
• Снижение напряжения в крови углекислого газа (гипокапния). Она возникает в результате компенсаторной гипервентиляции лёгких (в связи с гипоксемией).
• Газовый алкалоз является результатом гипокапнии.
Вместе с тем, следует помнить, что при наличии во вдыхаемом воздухе высокого содержания углекислого газа (например, при дыхании в замкнутом пространстве или в производственных условиях) экзогенная гипоксемия может сочетаться с гиперкапнией и ацидозом. Умеренная гиперкапния (в отличие от гипокапнии) не усугубляет влияний экзогенной гипоксии, а напротив — способствует увеличению кровообращения в сосудах мозга и сердца. Однако значительное увеличение рCO2 в крови приводит к ацидозу, дисбалансу ионов в клетках и биологических жидкостях, гипоксемии, снижению сродства Hb к кислороду и ряду других патогенных эффектов.
• Снижение системного АД (артериальная гипотензия), сочетающееся с гипоперфузией тканей в значительной мере являются следствием гипокапнии. CO2 относится к числу основных факторов регуляции тонуса сосудов мозга. Выраженное снижение раCO2 является сигналом к сужению просвета артериол мозга, сердца и уменьшения их кровоснабжения. Эти изменения служат причиной существенных расстройств жизнедеятельности организма, включая развитие обморока и коронарной недостаточности (проявляющейся стенокардией, а иногда — инфарктом миокарда).
Параллельно с указанными отклонениями выявляются нарушения ионного баланса как в клетках, так и в биологических жидкостях: межклеточной, плазме крови (гипернатриемия, гипокалиемия и гипокальциемия), лимфе, ликворе. Описанные выше отклонения могут быть уменьшены или устранены путём добавления к вдыхаемому воздуху необходимого (расчётного) количества углекислого газа.
Рис. 15–2. Типичные изменения газового состава и рН крови при гипоксии дыхательного типа.
• Снижение раО2 и рvО2 (артериальная и венозная гипоксемия).
• Как правило, увеличение раCO2 (гиперкапния).
• Ацидоз (на раннем этапе острой дыхательной недостаточности — газовый, а затем и негазовый).
• Снижение показателей SaO2 и SvO2 (насыщения Hb, соответственно, артериальной и венозной крови).
• Гиповолемия — уменьшение общего объёма крови в сосудистом русле и полостях сердца. Это один из важных механизмов развития недостаточности кровообращения и циркуляторной гипоксии. Причины гиповолемии:
† Большая кровопотеря.
† Гипогидратация организма (например, при хронических поносах, ожоговой болезни, массивном длительном потоотделении).
• Сердечная недостаточность проявляется снижением выброса крови из желудочков сердца и как следствие — уменьшением ОЦК. Причины:
† Прямое повреждение миокарда (например, кардиотропными токсинами, при его инфаркте, диффузном кардиосклерозе).
† Перегрузка миокарда (например, увеличенной массой крови или повышенным сосудистым сопротивлением её току),
† Нарушение диастолического расслабления сердца (например, при его сдавлении — тампонаде экссудатом или кровью, накопившимися в полости перикарда).
• Снижение тонуса стенок сосудов
Снижение тонуса стенок сосудов (как артериальных так и венозных). Это приводит к увеличению ёмкости сосудистого русла и уменьшению ОЦК. Причины:
† Снижение адренергических влияний на стенки сосудов (например, при надпочечниковой недостаточности, повреждении нейронов кардиовазомоторного центра).
† Доминирование холинергических воздействий (например, при невротических состояниях, на торпидной стадии шока, при отклонениях показателей электролитного баланса и КЩР).
† Дефицит минералокортикоидов в организме.
Гипотония стенок сосудов любого происхождения обусловливает снижение артериального и перфузионного давлений, а также объёма кровотока в сосудах тканей и органов.
• Расстройства микроциркуляции (см. главу 22).
• Нарушение диффузии кислорода через стенку микрососудов, в межклеточной жидкости, через плазмолемму и цитозоль к митохондриям. В конечном итоге это приводит к дефициту кислорода в матриксе митохондрий и, следовательно, к снижению интенсивности тканевого дыхания. Причины:
† Уплотнение стенок микрососудов (например, при дистрофиях их стенок, васкулитах, артериолосклерозе, интерстициальном отёке, микседеме).
† Мембранопатии клеток (например, при активации липопероксидного процесса, клеточных дистрофиях, опухолевом росте).
Циркуляторная гипоксия часто является результатом комбинации указанных выше механизмов (например при коллапсе, шоке, надпочечниковой недостаточности и гиперкортицизме различного генеза, артериальной гипер‑ и гипотензии).
• Локальная гипоксия
Причины
† Местные расстройства кровообращения (венозная гиперемия, ишемия, стаз).
† Регионарные нарушения диффузии кислорода из крови к клеткам и их митохондриям.
• Системная гипоксия
Причины
† Гиповолемия.
† Сердечная недостаточность.
† Генерализованные формы снижения тонуса сосудов.
Рис. 15–3. Типичные изменения газового состава и рН крови при гипоксии сердечно‑сосудистого типа. *АВР — артерио‑венозная разница по кислороду.
• Снижение рvО2 (венозная гипоксемия).
• Нормальное (как правило) раО2.
• Увеличение артериовенозной разницы по кислороду (за исключением вариантов с масштабным «сбросом» крови по артериовенозным шунтам минуя капиллярную сеть).
• Негазовый ацидоз.
• Снижение SvО2 (исключение — гипоксия при артериовенозном шунтировании).
Hb является оптимальным переносчиком кислорода. Транспорт кислорода от лёгких к тканям почти полностью осуществляется при участии Hb. Наибольшее количество кислорода, которое способен переносить Hb, равно 1,39 мл газообразного O2 на 1 г Hb. Реально транспортная способность Hb определяется количеством кислорода, связанного с Hb, и количеством кислорода, отданного тканям. При насыщении Hb кислородом в среднем на 96% кислородная ёмкость артериальной крови (VaO2) достигает примерно 20% (объёмных). В венозной крови этот показатель приближается к 14 % (объёмным). Следовательно, артерио‑венозная разница по кислороду составляет 6%.
• Уменьшение содержания Hb в единице объёма крови
Ведущее к гипоксии уменьшение содержания Hb в единице объёма крови и в организме в целом наблюдается при:
† Весьма существенном уменьшении числа эритроцитов и/или
† снижении содержания Hb (иногда до 40–60 г/л), т.е. при выраженных анемиях.
• Нарушения транспортных свойств Hb
Нарушения транспортных свойств Hb (гемоглобинопатии) обусловлены изменением его способности к оксигенации в крови капилляров альвеол и дезоксигенации в капиллярах тканей. Эти изменения могут быть наследуемыми или приобретёнными.
† Наследуемые гемоглобинопатии. Причиной наследуемого снижения свойства Hb транспортировать кислород к тканям чаще всего являются мутации генов, сопровождающиеся нарушением аминокислотного состава глобинов. Существует множество наследственных гемоглобинопатий. Так, в каталоге OMIM наследственных болезней человека (каталог проф. Виктора МакКьюсика) зарегистрировано не менее 700 аллелей глобинов. См. также статьи «Гемоглобин» и «Гемоглобинопатии» в приложении «Справочник терминов».
† Приобретённые гемоглобинопатии. Причинами приобретённых гемоглобинопатий чаще всего является повышенное содержание в крови метгемоглобинообразователей, окиси углерода, карбиламингемоглобина, нитроксигемоглобина.
‡ Метгемоглобинообразователи — группа веществ, обусловливающих переход иона железа из закисной формы (Fe2+) в окисную (Fe3+). Последняя форма обычно находится в связи с OН–. К метгемоглобинообразователям относятся нитраты, нитриты, хиноны, соединения хлорноватистой кислоты, некоторые ЛС (сульфаниламиды, фенацетин, амидопирин), эндогенные перекисные соединения. Образование метгемоглобина (MetHb) — обратимый процесс. Устранение метгемоглобинообразователя из организма сопровождается переходом (в течение нескольких часов) железа Hb в закисную форму. Участвующая в этом процессе МК дегидрируется в пировиноградную. MetHb не способен переносить кислород. В связи с этим кислородная ёмкость крови снижается. Учитывая, что MetHb имеет тёмно‑коричневую окраску, кровь и ткани организма также приобретают соответствующий оттенок.
‡ Окись углерода обладает высоким сродством (почти в 300 раз больше по сравнению с кислородом) к Hb. Окись углерода содержится в достаточно высокой концентрации в выхлопных газах двигателей внутреннего сгорания, работающих на бензине или керосине; в бытовом газе; в составе многих газов, образующихся в литейном производстве; при обжиге кирпича; при получении ацетона, метанола, аммиака и ряда других веществ. При взаимодействии окиси углерода с Hb образуется карбоксигемоглобин (HbCO), теряющий способность транспортировать кислород к тканям. Количество образующегося HbCO прямо пропорционально рCO и обратно пропорционально рО2 в воздухе. Выраженные нарушения жизнедеятельности организма развиваются при увеличении содержания HbCO в крови до 50% (от общей концентрации Hb). Повышение его уровня до 70–75% приводит к выраженной гипоксемии и смерти. Устранение CO из вдыхаемого воздуха обусловливает диссоциацию HbCO, но этот процесс протекает медленно и занимает несколько часов. HbCO имеет ярко‑красный цвет. В связи с этим при его избыточном образовании в организме кожа и слизистые оболочки становятся красными.
‡ Другие соединения Hb (например, карбиламингемоглобин, нитроксигемоглобин) образующиеся под влиянием сильных окислителей, также снижают транспортную способность Hb и вызывают развитие гемической гипоксии.
‡ Образование и диссоциация HbO2 во многом зависят от физико‑химических свойств плазмы крови. Изменения рН, осмотического давления, содержания 2,3‑дифосфоглицерата, реологических свойств снижает транспортные свойства Hb и способность HbO2 отдавать кислород тканям.
Рис. 15–4. Типичные изменения газового состава и рН крови при гипоксии гемического типа. АВР — артерио‑венозная разница по кислороду.
• Снижение объёмного содержания кислорода в артериальной крови (VaO2 в норме равно 19,5–21 объёмных %).
• Нормальное (!) парциальное напряжение кислорода в артериальной крови.
• Снижение рvO2 (венозная гипоксемия).
• Уменьшение VvO2.
• Негазовый ацидоз.
• Снижение артерио‑венозной разницы по кислороду.
• Снижение эффективности усвоения кислорода клетками наиболее часто является результатом ингибирования активности ферментов биологического окисления, значительного изменения физико‑химических параметров в тканях, торможения синтеза ферментов биологического окисления и повреждения мембран клеток.
† Подавление активности ферментов биологического окисления наблюдается при:
‡ Специфическом ингибировании ферментов. Примером могут служить ионы циана (CN–), препятствующие окислению цитохрома. В результате блокируется восстановление железа дыхательного фермента и транспорта кислорода к цитохрому. При этом реакции тканевого дыхания, активируемые другими агентами (не содержащими железо), не ингибируются. Однако, эффективность этих реакций весьма мала и не предотвращает развития гипоксии и нарушений жизнедеятельности.
Аналогичные последствия вызывает блокада активных центров ферментов тканевого дыхания антимицином А, соединениями, содержащими сульфид‑ион S2– и некоторыми другими веществами.
‡ Неспецифическом ингибировании ферментов биологического окисления ионами металлов (Ag2+, Hg2+, Cu2+). При этом указанные металлы обратимо взаимодействуют с SH–группами фермента с образованием его неактивной меркаптоидной формы.
‡ Конкурентном ингибировании ферментов биологического окисления. Оно заключается в блокировании активного центра фермента веществом, имеющим структурную аналогию с естественным субстратом реакции. Эффект конкурентного ингибирования фермента может быть устранён или снижен при возрастании содержания в клетке истинного субстрата. В роли конкурентных ингибиторов могут выступать оксалат и малонат, блокирующие взаимодействие сукцината с сукцинатдегидрогеназой в цикле трикарбоновых кислот; фторлимонная кислота, конкурирующая за активный центр аконитазы с цитратом.
† Изменения физико‑химических параметров в тканях (температуры, электролитного состава, рН, фазового состояния мембранных компонентов) в более или менее выраженной мере снижают эффективность биологического окисления. Отклонение от нормы указанных и других параметров наблюдается при многих болезнях и патологических состояниях: гипертермиях и гипотермиях, недостаточности различных органов (сердца, почек, печени), анемиях и ряде других).
† Торможение синтеза ферментов биологического окисления может наблюдаться при общем или частичном (особенно белковом) голодании; при большинстве гипо‑ и дисвитаминозов; нарушении обмена минеральных веществ, необходимых для синтеза ферментов.
† Повреждение мембран. В наибольшей мере это относится к мембранам митохондрий. Важно, что выраженная гипоксия любого типа сама по себе активирует многие механизмы, приводящие к повреждению мембран и ферментов клеток с развитием тканевой гипоксии.
• Снижение степени сопряжения окисления и фосфорилирования макроэргических соединений в дыхательной цепи.
† В этих условиях увеличиваются расход кислорода тканями и интенсивность функционирования компонентов дыхательной цепи. Однако, большая часть энергии транспорта электронов трансформируется в тепло и не используется для ресинтеза макроэргов. Эффективность биологического окисления снижается. Клетки не получают энергетического обеспечения. В связи с этим нарушаются их функции и нарушается жизнедеятельность организма в целом.
† Выраженной способностью разобщать процессы окисления и фосфорилирования обладают многие эндогенные агенты (например, избыток Ca2+, H+, ВЖК, йодсодержащие гормоны щитовидной железы), а также экзогенные вещества (2,4‑динитрофенол, дикумарин, пентахлорфенол, грамицидин и другие).
Рис. 15–5. Типичные изменения газового состава и рН крови при гипоксии тканевого типа. *При действии разобщающих агентов может меняться незначительно.
• Увеличение парциального напряжения кислорода в венозной крови.
• Повышение сатурации Hb кислородом в венозной крови.
• Увеличение объёмного содержания кислорода в венозной крови.
• Нормальный диапазон рО2, SO2 и VO2 в артериальной крови (в типичных случаях).
• Уменьшение артерио‑венозной разницы по кислороду (исключение — тканевая гипоксия, развившаяся при действии разобщителей окисления и фосфорилирования).
• Негазовый ацидоз.
Рис. 15–6. Типичные изменения газового состава и рН крови при гипоксии субстратного типа *АВР — артерио‑венозная разница по кислороду.
• Увеличение парциального напряжения кислорода в венозной крови.
• Повышение сатурации кислородом Hb эритроцитов венозной крови.
• Возрастание объёмного содержания кислорода в венозной крови.
• Уменьшение артерио‑венозной разницы по кислороду.
• Нормальные значения paO2, SaO2, VaO2.
• Ацидоз, развивающийся в результате нарушений обмена веществ, гемодинамики, внешнего дыхания и других изменений, обусловленных болезнью или патологическим процессом, вызвавшим гипоксию субстратного типа. Например, при СД — дефицит глюкозы в клетках, в организме накапливаются КТ, лактат, пируват (в связи с нарушением липидного и углеводного обмена), что приводит к метаболическому ацидозу.
• Относительную (по сравнению с требуемым при данном уровне функции) недостаточность кровоснабжения мышцы.
• Дефицит кислорода в миоцитах. Последнее вызывает недостаточность процессов биологического окисления в них.
Рис. 15–7. Типичные изменения газового состава и рН крови при гипоксии перегрузочного типа. АВР — артерио‑венозная разница по кислороду.
• Снижение парциального напряжения кислорода в венозной крови (венозная гипоксемия), оттекающей от гиперфункционирующей мышцы.
• Уменьшение степени сатурации Hb эритроцитов в венозной крови.
• Увеличение артерио‑венозной разницы по кислороду.
• Увеличение парциального напряжения углекислого газа (гиперкапния) в венозной крови, что является результатом активированного метаболизма в ткани мышцы.
• Ацидоз в пробах крови, взятой из вены гиперфункционирующей мышцы.
• Факторы, нарушающие два и более механизмов доставки и использования кислорода и субстратов метаболизма в процессе биологического окисления.
† Примером могут служить наркотические вещества, способные в высоких дозах угнетать функцию сердца, нейронов дыхательного центра и активность ферментов тканевого дыхания. В результате развивается смешанная гипоксия гемодинамического, дыхательного и тканевого типов.
† Острая массивная кровопотеря приводит как к снижению кислородной ёмкости крови (в связи с уменьшением содержания Hb), так и к расстройству кровообращения: развивается гемический и гемодинамический типы гипоксии.
• Последовательное влияние факторов, ведущих к повреждению различных механизмов транспорта кислорода и субстратов метаболизма, а также процессов биологического окисления. Такая картина наблюдается при развитии тяжёлой гипоксии любого происхождения.
Например, острая массивная потеря крови приводит к гемической гипоксии. Снижение притока крови к сердцу ведёт к уменьшению выброса крови, расстройствам гемодинамики, в том числе — коронарного и мозгового кровотока. Ишемия ткани мозга может обусловить расстройство функции дыхательного центра и вызвать респираторный тип гипоксии. Взаимное потенцирование нарушений гемодинамики и внешнего дыхания приводит к значительному дефициту в тканях кислорода и субстратов метаболизма, к грубым повреждениям мембран клеток, а также ферментов биологического окисления и, как следствие — к гипоксии тканевого типа.
• обусловливающих развитие гипоксии и
• обеспечивающих адаптацию организма к гипоксии и направленных на поддержание гомеостаза в данных условиях.
† Система реализует свои эффекты за счёт активации доставки кислорода и субстратов метаболизма к тканям и включения их в реакции биологического окисления.
† В структуру системы входят лёгкие, сердце, сосудистая система, кровь, системы биологического окисления и регуляторные системы.
Рис. 15–8. Механизмы экстренной адаптации организма к гипоксии.
• Причина активации механизмов срочной адаптации организма к гипоксии: недостаточность биологического окисления. Как следствие, снижается содержание АТФ в тканях, необходимого для обеспечения оптимального уровня жизнедеятельности.
• Ключевой фактор процесса экстренной адаптации организма к гипоксии — активация механизмов транспорта O2 и субстратов обмена веществ к тканям и органам. Эти механизмы предсуществуют в каждом организме. В связи с этим они активируются сразу (экстренно, срочно) при возникновении гипоксии и снижении эффективности биологического окисления.
• Повышенное функционирование систем транспорта кислорода и субстратов метаболизма к клеткам сопровождается интенсивным расходом энергии и субстратов обмена веществ. Таким образом, эти механизмы имеют высокую «энергетическую и субстратную цену». Именно это является (или может стать) лимитирующим фактором уровня и длительности гиперфункционирования.
Причины: активация афферентной импульсации от хеморецепторов (аорты, каротидной зоны сонных артерий, ствола мозга и других регионов организма) в ответ на изменение показателей газового состава крови (снижение раО2, увеличение раCO2 и др.).
Механизмы: увеличение частоты и глубины дыхательных движений и числа раскрывшихся резервных альвеол. В результате минутный объём дыхания (МОД) может возрасти более чем на порядок: с 5–6 л в покое до 90–110 л в условиях гипоксии.
Причина: активации симпатикоадреналовой системы.
Механизмы
• Тахикардия.
• Увеличение ударного выброса крови из сердца.
• Возрастание интегративного показателя функции сердца — минутного объёма кровообращения (сердечного выброса крови). Если в покое он равен 4–5 л, то при гипоксии может достигать 30–40 л;
• Повышение линейной и объёмной скорости кровотока в сосудах.
Причины и механизмы феномена централизации кровотока
• Активация в условиях гипоксии симпатикоадреналовой системы и высвобождение катехоламинов. Последние вызывают сужение артериол и снижение притока крови по ним к большинству тканей и органов (мышцам, органам брюшной полости, почкам, подкожной клетчатке и др.).
• Быстрое и значительное накопление в миокарде и ткани мозга метаболитов с сосудорасширяющим эффектом: аденозина, простациклина, ПгЕ, кининов и других. Эти вещества не только препятствуют реализации вазоконстрикторного действия катехоламинов, но и обеспечивают расширение артериол и увеличение кровоснабжения сердца и мозга в условиях гипоксии.
Последствия
• Расширение артериол и увеличение кровоснабжения мозга и сердца.
• Одновременное сужение просвета артериол и уменьшение объёма кровоснабжения в других органах и тканях: мышцах, подкожной клетчатке, сосудах брюшной полости, почках.
• Активацией выброса эритроцитов из костного мозга и депо крови (в последнем случае — одновременно с другими форменными элементами крови).
Причина: высокая концентрация в крови катехоламинов, тиреоидных и кортикостероидных гормонов. В результате при острой гипоксии развивается полицитемия.
Следствие: повышение кислородной ёмкости крови.
• Повышением степени диссоциации HbO2 в тканях.
Причины
† Гипоксемия, особенно в капиллярной и венозной крови. В связи с этим именно в капиллярах и посткапиллярных венулах происходит возрастание степени отдачи кислорода HbO2.
† Ацидоз, закономерно развивающийся при любом типе гипоксии.
† Повышенная в условиях гипоксии концентрация в эритроцитах 2,3‑дифосфоглицерата, а также других органических фосфатов: АДФ, пиридоксальфосфата. Эти вещества стимулируют отщепление кислорода от HbO2.
• Увеличением сродства Hb к кислороду в капиллярах лёгких. Этот эффект реализуется при участии органических фосфатов, в основном — 2,3‑дифосфоглицерата. При этом важное значение имеет свойство Hb связывать значительное количество кислорода даже в условиях существенно сниженного pО2 в капиллярах лёгких. При pО2 равном 100 мм рт.ст. образуется 96% HbO2, при pО2 80 и 50 мм рт.ст. — 90 и 81% соответственно.
• Повышение эффективности процессов усвоения кислорода и субстратов окисления тканями организма и доставки их к митохондриям.
• Активацию ферментов окисления и фосфорилирования, что наблюдается при умеренном повреждении клеток и их митохондрий.
• Увеличение степени сопряжения процессов окисления и фосфорилирования адениннуклеотидов: АДФ, АМФ, а также креатина.
• Активацию гликолитического пути окисления. Этот феномен регистрируется при всех типах гипоксии, особенно на ранних её этапах.
Причины активации гликолиза
† Снижение внутриклеточного уровня АТФ и его ингибирующего влияния на ферменты гликолиза.
† Увеличение содержания в клетках продуктов гидролиза АТФ (АДФ, АМФ, неорганического фосфата), активирующих ключевые гликолитические ферменты.
• Повторное или длительно продолжающееся воздействие умеренной гипоксии, вызывающее многократную активацию срочных механизмов адаптации. Это обеспечивает формирование структурно‑функциональной основы для процессов долговременного адаптации к гипоксии. При этом существенно, чтобы интервал между эпизодами умеренной гипоксии не был слишком велик или мал.
† Большой интервал приведёт к ликвидации структурных (субклеточных, клеточных, органно‑тканевых) адаптивных изменений.
† Малый интервал — будет недостаточен для их развития и закрепления.
• Выраженность умеренной гипоксии
† Гипоксия слишком малой выраженности не активирует механизмов срочной и долговременной адаптации. Регистрируются лишь преходящие реакции в диапазоне физиологического ответа на снижение биологического окисления.
† Гипоксия чрезмерной выраженности вызывает срыв процесса адаптации, расстройства функций, обмена веществ и повреждение структур организма.
• Оптимальное состояние жизнедеятельности организма. Это позволяет развить механизмы срочной адаптации и закрепить структурно‑функциональные изменения, лежащие в основе долговременной адаптации к гипоксии. Недостаточность каких‑либо систем организма (дыхательной, ССС, крови, тканевого метаболизма) и/или пластических процессов делают невозможным осуществление адаптивных процессов к гипоксии (как и к другим экстремальным факторам).
† Процессы приспособления к повторной и/или длительной гипоксии формируются постепенно в результате многократной и/или продолжительной активации срочной адаптации к гипоксии.
† Переход от несовершенной и неустойчивой экстренной адаптации к гипоксии к устойчивой и долговременной адаптации имеет существенное биологическое (жизненно важное) значение: это создаёт условия для оптимальной жизнедеятельности организма в новых, часто экстремальных условиях существования.
† Основой перехода организма к состоянию долговременной адаптированности к гипоксии является активация синтеза нуклеиновых кислот и белков.
† Синтетические процессы доминируют в органах, обеспечивающих транспорт кислорода и субстратов обмена веществ, а также в тканях, интенсивно функционирующих в условиях гипоксии.
† В отличие от экстренной адаптации к гипоксии, при которой ведущее значение имеет активация механизмов транспорта O2 и субстратов обмена веществ к тканям, основным звеном долговременного приспособления к гипоксии является существенное повышение эффективности процессов биологического окисления в клетках.
† Системы, обеспечивающие доставку кислорода и продуктов обмена веществ к тканям (внешнего дыхания и кровообращения), при устойчивой адаптации к гипоксии также приобретают новые качества: повышенные мощность, экономичность и надёжность функционирования.
Рис. 15–9. Механизмы долговременной адаптации организма к гипоксии.
Системы биологического окисления
Системы биологического окисления в тканях обеспечивают оптимальное энергетическое обеспечение функционирующих структур и уровень пластических процессов в них в условиях гипоксии. Это достигается благодаря увеличению:
† числа митохондрий и количества крист митохондрий,
† числа молекул ферментов тканевого дыхания в каждой митохондрии, а также активности ферментов, особенно — цитохромоксидазы,
† эффективности процессов биологического окисления и сопряжения его с фосфорилированием,
† эффективности механизмов анаэробного ресинтеза АТФ в клетках.
Система внешнего дыхания
Система внешнего дыхания обеспечивает уровень газообмена, достаточный для оптимального течения обмена веществ и пластических процессов в тканях. Это достигается благодаря:
† Гипертрофии лёгких и увеличению в связи с этим:
§ площади альвеол,
§ капилляров в межальвеолярных перегородках,
§ уровня кровотока в этих капиллярах.
† Увеличению диффузионной способности аэро‑гематического барьера лёгких.
† Повышению эффективности соотношения вентиляции альвеол и перфузии их кровью (вентиляционно‑перфузионного соотношения).
† Гипертрофии и возрастанию мощности дыхательной мускулатуры.
† Возрастанию жизненной ёмкости лёгких (ЖЁЛ).
Сердце
При долговременной адаптации к гипоксии увеличивается сила, а также скорость процессов сокращения и расслабления миокарда. В результате происходит возрастание объёма и скорости выбрасываемой в сосудистое русло крови — ударного и сердечного (минутного) выбросов. Эти эффекты становятся возможными благодаря:
† Умеренной сбалансированной гипертрофии всех структурных элементов сердца: миокарда, сосудистого русла, нервных волокон.
† Увеличению числа функционирующих капилляров в сердце.
† Уменьшению расстояния между стенкой капилляра и сарколеммой кардиомиоцита.
† Увеличению числа митохондрий в кардиомиоцитах и эффективности реакций биологического окисления. В связи с этим сердце расходует на 30–35% меньше кислорода и субстратов обмена веществ, чем в неадаптированном к гипоксии состоянии.
† Повышению эффективности трансмембранных процессов (транспорта ионов, субстратов и продуктов метаболизма, кислорода и др.).
† Возрастанию мощности и скорости взаимодействия актина и миозина в миофибриллах кардиомиоцитов.
† Повышению эффективности адрен‑ и холинергических систем регуляции сердца.
Сосудистая система
В адаптированном организме сосудистая система способна обеспечивать такой уровень перфузии тканей кровью, который необходим для осуществления их функции даже в условиях гипоксии. В основе этого лежат следующие механизмы:
† Увеличение количества функционирующих капилляров в тканях и органах.
† Снижение миогенного тонуса артериол и уменьшение реактивных свойств стенок резистивных сосудов к вазоконстрикторам: катехоламинам, АДГ, лейкотриенам, отдельным Пг и другим. Это создаёт условия для развития устойчивой артериальной гиперемии в функционирующих органах и тканях.
Система крови
При устойчивой адаптации организма к гипоксии существенно возрастают кислородная ёмкость крови, скорость диссоциации HbO2, сродство дезоксигемоглобина к кислороду в капиллярах лёгких.
Увеличение кислородной ёмкости крови является результатом стимуляции эритропоэза и развития эритроцитоза. Механизм эритроцитоза: Активация под влиянием ишемии и гипоксии образования в почках эритропоэтина. Эритропоэтин стимулирует эритропоэз.
Метаболизм
Метаболические процессы в тканях при достижении состояния устойчивой адаптированности к гипоксии характеризуются:
† Снижением их интенсивности.
† Экономным использованием кислорода и субстратов обмена веществ в реакциях биологического окисления и пластических процессах.
† Высокой эффективностью и лабильностью реакций анаэробного ресинтеза АТФ.
† Доминированием анаболических процессов в тканях по сравнению с катаболическими.
† Высокой мощностью и мобильностью механизмов трансмембранного переноса ионов. В значительной мере это является следствием повышения эффективности работы мембранных АТФаз, что обеспечивает регуляцию трансмембранного распределения ионов, миогенного тонуса артериол, водно‑солевого обмена и др. важных процессов.
Системы регуляции
Системы регуляции адаптированного к гипоксии организма обеспечивают достаточную эффективность, экономичность и надёжность управления его жизнедеятельностью. Это достигается благодаря включению механизмов нервной и гуморальной регуляции функций.
Нервная регуляция
Значительные изменения как в высших отделах мозга, так и в вегетативной нервной системе адаптированного к гипоксии организма характеризуются:
† Повышенной резистентностью нейронов к гипоксии и дефициту АТФ, а также некоторым другим факторам (например, токсинам, недостатку субстратов метаболизма).
† Гипертрофией нейронов и увеличением числа нервных окончаний в тканях и органах.
† Увеличенной чувствительностью рецепторных структур к нейромедиаторам. Последнее, как правило, сочетается с уменьшением синтеза и высвобождения нейромедиаторов.
Указанные, а также, по‑видимому, и другие изменения в нервной системе способствуют:
† Развитию мобильных и эффективно регулирующих функции органов влияний на них.
† Быстрой выработке и сохранению новых условных рефлексов.
† Переходу приобретённых навыков из кратковременных в долговременные.
† Устойчивости нервной системы к патогенным воздействиям.
Гуморальная регуляция
Перестройка функционирования эндокринной системы при гипоксии обусловливает:
† Меньшую степень стимуляции мозгового вещества надпочечников, гипоталамо‑гипофизарно‑надпочечниковой и других систем. Это ограничивает активацию механизмов стресс‑реакции и её возможные патогенные эффекты.
† Повышение чувствительности рецепторов клеток к гормонам, что способствует уменьшению объёма их синтеза в железах внутренней секреции.
В целом изменения в системах регуляции потенцируют как системные, так и органные приспособительные реакции организма, жизнедеятельность которого осуществляется в условиях гипоксии.
• Острейшая (молниеносная) тяжёлая гипоксия приводит к быстрой потере сознания, подавлению функций организма и его гибели. Такая картина наблюдается, например, при вдыхании газовых смесей, не содержащих кислорода или содержащих его в малых количествах. Это может быть при авариях в производственных условиях (например, в шахтах), в летательных аппаратах, в подводных лодках, при поломке скафандров. Молниеносная гипоксия развивается также при фибрилляции желудочков сердца, при острой массивной (артериальной) кровопотере, отравлении цианидами и других подобных ситуациях.
• Хроническая (постоянная или прерывистая) умеренная гипоксия сопровождается, как правило, адаптацией организма к гипоксии.
Рис. 15–10. Расстройства обмена веществ при острой гипоксии.
† Повышенный гидролиз АТФ, АДФ, АМФ и креатинфосфата.
† Подавление реакций окислительного фосфорилирования.
Причины
† Дефицит АТФ и снижение его ингибирующего влияния на ключевые ферменты гликолиза.
† Активация гликолитических ферментов продуктами гидролиза АТФ: АДФ и АМФ.
Проявления
† Снижение содержания гликогена и глюкозы в клетках.
† Увеличение внутриклеточного содержания молочной и пировиноградной кислот.
Последнее является также результатом торможения их окисления в дыхательной цепи и ресинтеза из них гликогена, требующего энергии АТФ.
Параллельно активируется протеолиз, обусловленный активацией в условиях ацидоза протеаз, а также — неферментного гидролиза белков.
† Активацией липолиза вследствие повышения активности липаз и ацидоза.
† Торможением ресинтеза липидов. Причина: дефицит макроэргических соединений.
† Накоплением в результате вышеуказанных процессов избытка
КТ (ацетоуксусной, b‑оксимасляной кислот,
ацетона) и жирных кислот в плазме крови, межклеточной жидкости, клетках. При
этом ВЖК оказывают разобщающее влияние на процессы окисления и
фосфорилирования, что усугубляет дефицит АТФ.
Причины
† Дефицит АТФ, энергия которой необходима для АТФаз: Na+,K+‑АТФазы, Ca2+‑зависимой АТФазы и др.
† Повреждение мембран и их ионных каналов, обеспечивающих энерго‑ и электрозависимый перенос, а также пассивный транспорт ионов.
† Изменение содержания в организме гормонов, регулирующих обмен ионов: минералокортикоидов, кальцитонина и др.
Проявления
† Нарушение соотношения ионов в клетках:
‡ Трансмембранного (обычно в условиях гипоксии клетки теряют K+, в цитозоле накапливаются Na+ и Ca2+, в митохондриях — Ca2+).
‡ Между отдельными ионами (например, в цитозоле уменьшается соотношение K+/Na+, K+/Ca2+).
† Увеличение в крови содержания Na+, Cl–, отдельных микроэлементов. Изменения содержания разных ионов различно. Оно зависит от степени гипоксии, преимущественного повреждения того или иного органа, изменений гормонального статуса и других факторов.
† Накопление избытка жидкости в клетках (набухание клеток). Причины:
‡ Увеличение осмотического давления в цитоплазме клеток в связи с накопление в них Na+, Ca2+ и некоторых других ионов, а также — в результате гидролиза крупных молекул органических веществ (например, гликогена, белка).
‡ Повышение онкотического давления в клетках в результате распада полипептидов, ЛП и других белоксодержащих молекул, обладающих гидрофильными свойствами.
Резистентность нервных клеток
уменьшается в следующем порядке: периферические нервные узлы ®
спинной мозг ® продолговатый мозг ® гиппокамп ®
мозжечок ® кора больших полушарий. Прекращение оксигенации коры мозга
вызывает значительные структурные и функциональные изменения в ней уже через
2–3 мин, в продолговатом мозге через 8–12 мин, а в ганглиях вегетативной нервной системы через 50–60 мин.
Отсюда следует, что последствия гипоксии для организма в целом определяются степенью повреждения нейронов коры больших полушарий и временем их развития.
Рис. 15–11. Проявления расстройств функций организма при острой гипоксии.
Нарушения ВНД в условиях гипоксии выявляются наиболее рано — уже через несколько секунд. Это проявляется:
• Снижением способности адекватно оценивать происходящие события и окружающую обстановку.
• Ощущениями дискомфорта, тяжести в голове, головной боли.
• Дискоординацией движений.
• Замедлением логического мышления и принятия решений (в том числе простых).
• Расстройством сознания и его потерей в тяжёлых случаях.
• Нарушением бульбарных функций, что приводит к расстройствам функций сердца и дыхания, вплоть до их прекращения.
Расстройства кровообращения выражаются:
• Снижением сократительной функции миокарда, уменьшением ударного и сердечного выбросов.
• Расстройством кровотока в сосудах сердца и развитием коронарной недостаточности, обусловливающей эпизоды стенокардии и даже инфаркт миокарда.
• Развитием аритмий сердца, включая мерцание и фибрилляцию предсердий и желудочков.
• Гипертензивными реакциями (за исключением отдельных разновидностей гипоксии циркуляторного типа), сменяющимися артериальной гипотензией, в том числе — острой (коллапсом).
• Изменением объёма и реологических свойств крови. Так, при гипоксии гемического типа, вызванной острой кровопотерей, развиваются характерные стадийные их изменения.
† При других типах гипоксии вязкость и ОЦК могут повышаться в связи с выбросом эритроцитов из костного мозга и мобилизацией депонированной фракции крови.
† Возможны расстройства микроциркуляции, проявляющиеся чрезмерным замедлением тока крови в капиллярах, турбулентным его характером, артериолярно‑венулярным шунтированием, трансмуральными и экстраваскулярными нарушениями микроциркуляции. В тяжёлых случаях эти расстройства завершаются сладжем и капилляротрофической недостаточностью.
Отклонения функции системы внешнего дыхания проявляются:
• Вначале увеличением объёма альвеолярной вентиляции, а затем (при нарастании степени гипоксии и повреждения нервной системы) прогрессирующим её снижением.
• Уменьшением общей и регионарной перфузии ткани лёгких. Это обусловлено падением сердечного выброса, а также регионарной вазоконстрикцией в условиях гипоксии.
• Нарушением вентиляционно‑перфузионного соотношения (вследствие местных расстройств перфузии и вентиляции в различных участках лёгких).
• Снижением диффузии газов через аэрогематический барьер (в связи с развитием отёка и набуханием клеток межальвеолярной перегородки).
В итоге развивается дыхательная недостаточность, усугубляющая степень гипоксии.
Нарушения функций почек разнообразны. Они зависят от степени, длительности и типа гипоксии. Как правило, при гипоксии развиваются:
• Расстройства диуреза (от полиурии до олиго‑ и анурии).
† Олигурия развивается, как правило, при гипоксии, вызванной острой кровопотерей. В данном случае олигурия является адаптивной реакцией, препятствующей уменьшению ОЦК. Олигурия наблюдается и при гемической гипоксии, вызванной гемолизом эритроцитов. В этих условиях снижение диуреза обусловлено нарушением фильтрации в клубочках почек в связи с накоплением в их капиллярах детрита из разрушенных эритроцитов.
† Полиурия наблюдается при выраженной гипоксический альтерации почек (например, у пациентов с хронической циркуляторной, дыхательной или гемической — постгеморрагической гипоксией). При этом развивается почечная недостаточность и полиурия.
• Нарушения состава мочи
† Относительная плотность меняется разнонаправленно. На различных этапах гипоксии наблюдается:
‡ Повышение плотности мочи (гиперстенурия).
‡ Понижение её (гипостенурия).
‡ Мало изменяющаяся в течение суток плотность (изостенурия).
• Компоненты мочи:
‡ Отклонение за пределы нормального диапазона содержания глюкозы, ионов, азотистых соединений и других веществ, имеющихся и в норме.
‡ Появление в моче отсутствующих в норме компонентов: эритроцитов, лейкоцитов, цилиндров, белка.
Выраженные повреждения почек при тяжёлых формах гипоксии могут привести к развитию почечной недостаточности, уремии и комы.
В условиях гипоксии расстройства функций печени развиваются, как правило, при хронически протекающей гипоксии. Их проявления зависят от особенностей патогенеза основной формы патологии (например, сердечной или дыхательной недостаточности, анемического состояния, расстройств обмена веществ, биологического окисления и др.). В любом случае При гипоксии выявляются признаки парциального или тотального нарушения функций печени:
• Расстройства обмена веществ (углеводного, липидного, белкового, витаминов).
• Нарушения антитоксической функции.
• Угнетение образования различных веществ (например, факторов системы гемостаза, коферментов, мочевины, жёлчных пигментов и др.).
Нарушения системы пищеварения проявляются:
• Расстройствами аппетита (как правило, его снижением).
• Нарушением моторики желудка и кишечника (обычно — снижением перистальтики, тонуса и замедлением эвакуации желудочного и/или кишечного содержимого).
• Развитием эрозий и язв (особенно при длительной тяжёлой гипоксии).
При хронических и выраженных гипоксических состояниях происходит снижение эффективности системы ИБН, что проявляется:
• Низкой активностью иммунокомпетентных клеток.
• Недостаточной эффективностью факторов неспецифической защиты организма: комплемента, ИФН, мураминидазы, белков острой фазы, естественных киллеров и др.
Указанные и некоторые другие изменения в системе ИБН при выраженной длительной гипоксии могут привести к развитию различных иммунопатологических состояний: иммунодефицитов, патологической иммунной толерантности, аллергических реакций, состояний иммунной аутоагрессии.
Рис. 15–12. Принципы и методы устранения/снижения тяжести гипоксии.
† Восстанавливают оптимальное парциальное давление кислорода во вдыхаемой газовой смеси (например, при разгерметизации летательных аппаратов, индивидуальных скафандров, дыхательных приборов и т.п.).
† Обеспечивают восстановление нормального барометрического давления и как следствие — парциального давления кислорода в воздухе. Это достигается путём снижения высоты полёта, восстановления герметичности летательных аппаратов и необходимых условий подачи воздуха для дыхания в скафандре, индивидуальном дыхательном приборе или кабине аппарата.
† Обеспечивают нормализацию содержания кислорода во вдыхаемом воздухе путём интенсивного проветривания помещения или подачи в него воздуха с нормальным содержанием кислорода.
† Добавляют во вдыхаемый воздух с нормальным содержанием кислорода малые количества углекислого газа. Оптимальным считается повышение парциального содержания CO2 до 3–7%. Это обеспечивает:
‡ Стимуляцию инспираторных нейронов дыхательного центра и активацию дыхания.
‡ Расширение артериол мозга и сердца, что способствует нормализации газообмена в них, доставки субстратов, оттоку CO2 и продуктов метаболизма.
‡ Уменьшению степени гиперкапнии и её патогенных последствий: нарушений кровоснабжения мозга, миокарда и некоторых других органов, расстройств ВНД, дыхательного ацидоза и др.
• Лечение заболевания или патологического процесса, приведшего к гипоксии.
• Обеспечение организма оптимальным содержанием кислорода во вдыхаемом воздухе.
• Реакции организма на гипероксигенацию.
† Нормализация (или тенденция к ней) объёма альвеолярной вентиляции, в основном, за счёт снижения частоты дыханий.
† Оптимизация сердечного выброса в связи с урежением сокращений сердца.
† Уменьшение ОЦК в результате редепонирования крови.
• Последствия реакций организма на гипероксигенацию.
† Устранение гипоксии и её патогенных эффектов. Это достигается при своевременном и адекватном проведении оксигенотерапии, а также других лечебных мероприятий.
† Развитие патогенных реакций, усугубление гипоксического состояния и расстройств жизнедеятельности организма:
Причина: токсическое действие избытка кислорода. К этому приводит необоснованное или неправильное проведение гипероксигенотерапии.
Патогенез
‡ Образование избытка активных форм кислорода и их прямое повреждающее действие на мембраны клеток, ферменты, нуклеиновые кислоты, белки и их соединения с другими веществами.
‡ Чрезмерная неконтролируемая интенсификация СПОЛ и других органических соединений.
‡ Прямое и опосредованное подавление тканевого дыхания, усугубляющее нарушения энергообеспечения клеток.
Проявления. Токсическое действие избытка кислорода манифестируется тремя вариантами патологических состояний:
‡ Судорожным. Причиной является преимущественное повреждение головного и спинного мозга, обусловливающее избыточное возбуждение нейронов ряда нервных центров, а также мотонейронов.
‡ Гиповентиляционным (характеризуется дыхательной недостаточностью). Причины:: ателектазы в лёгких, снижение проницаемости аэрогематического барьера, отёк лёгкого.
‡ Общетоксическим. Заключается в развитии полиорганной недостаточности. Последняя нередко наблюдается при отсутствии на раннем этапе судорог и выраженной дыхательной недостаточности. Если гипоксия продолжается, то у пациента появляются судороги и признаки асфиксии.
Устранение кислородного отравления достигается путём перехода на дыхание воздухом с нормальным содержанием кислорода.
• Ликвидацию или снижение степени ацидоза в организме.
• Уменьшение выраженности дисбаланса ионов в клетках, межклеточной жидкости, крови.
• Предотвращение или снижение степени повреждения клеточных мембран.
• Профилактику или уменьшение выраженности альтерации ферментов в клетках и биологических жидкостях.
• Снижение расхода энергии макроэргических соединений за счёт ограничения интенсивности жизнедеятельности организма.